DOI: https://doi.org/10.37811/cl_rcm.v8i2.10549

Modelo de Proyección Poblacional con Series de Tiempo Difusas

 

Jaqueline Jessica Cabello Blanco[1]

[email protected]

https://orcid.org/0000-0002-7464-0305

Universidad Nacional José Faustino Sanchez Carrión

Huacho - Perú

 

RESUMEN

El presente estudio es de alcance descriptivo – propositivo, la finalidad del estudio es modelar la proyección poblacional con series de tiempo difusas, el diseño de investigación empleado es no experimental. El modelo de proyección de la población peruana (variable lingüística) obtenido fue: másmásmásmás , este modelo de proyección poblacional con series de tiempo difusas presenta una tasa media de error de pronóstico de 0.106% frente a una tasa media de error de pronóstico del modelo lineal de 4.06% y 1.40% de tasa media de error de pronóstico del modelo logístico. Se concluye que el pronóstico de la población peruana con series de tiempo difusas tiene mayor precisión tomando en cuenta en el proceso, la tendencia de la población en estudio.

 

Palabras clave: proyección poblacional, series de tiempo difusas, conjuntos difusos

 

 


 

Population Projection Model With Fuzzy Time Series

 

ABSTRACT

The present study is descriptive - propositional in scope, the purpose of the study is to model the population projection with fuzzy time series, the research design used is non-experimental. The projection model of the Peruvian population (linguistic variable) obtained was: plus, this population projection model with fuzzy time series presents an average forecast error rate of 0. 106% versus a mean forecast error rate of the linear model of 4.06% and 1.40% mean forecast error rate of the logistic model. It is concluded that the forecast of the Peruvian population with fuzzy time series has greater accuracy taking into account in the process, the trend of the population under study.

 

Keywords: population projection, fuzzy time series, fuzzy sets

 

 

Artículo recibido 20 febrero 2024

Aceptado para publicación: 26 marzo 2024

 


 

INTRODUCCIÓN

La población mundial está experimentando crecimientos drásticos, sus relaciones económicas y sociales son complejas, la función de los países es desarrollar, implementar y evaluar programas para mejorar la calidad de vida de sus ciudadanos, por lo que se necesita información del crecimiento demográfico, Rincón (1989) afirma que las proyecciones de población constituyen una de las bases fundamentales para fines de planificación de las actividades económicas y sociales de un país; en Perú, la metodología seguida para la elaboración de las proyecciones nacionales, consideran las recomendaciones, normativas y metodologías de las Naciones Unidas, que utiliza el método demográfico de los componentes (fecundidad, mortalidad y migración), método tradicional cuya principal fortaleza es su simplicidad, englobando los nacimientos y población migrante para después deducir las defunciones y emigraciones, el procesamiento de los datos lo realizan utilizando el PRODEX que es un programa en Excel preparado por la Comisión Económica para América Latina y el Caribe (CEPAL) del Centro Latinoamericano y Caribeño Demográfico (CELADE), el cual permite ingresar cada uno de los componentes elaborados en forma independiente, cuyo principio fundamental es la ecuación compensadora desarrollada por Pascal Whelpton en 1947, de esta forma la población total es proyectada por el método de componentes, que es resultado de la combinación de la fecundidad, la mortalidad y la migración, la precisión de estas proyecciones están sujetas a un determinado margen de error, la población se proyecta en el tiempo bajo supuestos del comportamiento de las tasas que regulan los niveles de crecimiento, por tanto el propósito de esta investigación es determinar el modelo de proyección poblacional con series de tiempo difusas que aproxime la realidad desde esta teoría, que proporcione mayor indice de precisión que el método existente, es necesario entender que la proyección poblacional es un fenómeno con incertidumbre en su ocurrencia. La importancia de esta investigación es cuantificar la incertidumbre que se relaciona a la proyección poblacional, este modelo de proyección poblacional servirá como instrumento científico que cuente con la coherencia, validez y veracidad científica. Los datos de esta investigación provienen del Boletín de Análisis Demográfico N° 38 del Instituto Nacional de Estadística e Informática (INEI) y se presenta el modelo de proyección poblacional “desarrollo de la población” con series de tiempo difusas; diferentes autores han venido estudiando en este campo (Abbasov y Mamedova, 2003; Argote-Cusi, 2018; Chen y Hsu, 2004; Chen y Hwang, 2000; Jilani et al., 2008; Sasu, 2010; Song y Chissom, 1993, 1994; Stevenson y Porter, 1972) y otros campos de la dinámica social humana; Tabares y Hernández (2009) y Zadeh (1975) mencionan que la ciencia moderna no puede comprender un fenómeno si no está caracterizado en términos cuantitativos, al renunciar a la precisión se disponen a entender números inciertos (números difusos) para explorar el uso de las variables lingüísticas que son variables cuyos valores no son números sino palabras o frases en un lenguaje natural o artificial que son de utilidad en una amplia variedad de aplicaciones prácticas, Aluja (2000) menciona que la caracterización de estos números difusos son susceptibles de representarse en fenómenos con incertidumbre en su ocurrencia. Así el conjunto total de términos de la variable lingüística “desarrollo de la población” de esta investigación es: bajo crecimiento poblacional más invariante crecimiento poblacional más moderado crecimiento poblacional más alto crecimiento poblacional más muy alto crecimiento poblacional. En conclusión, la teoría de las series de tiempo difusas es útil en la modelación del crecimiento poblacional, que es un fenómeno no caracterizado en términos cuantitativos.

METODOLOGÍA

La investigación desarrollada es de enfoque cuantitativo, cuyo alcance es descriptivo – propositivo cuenta con un diseño no experimental de corte transeccional. Para desarrollar el modelo de proyección poblacional con series de tiempo difusas se utilizó el modelo de primer orden, se siguió una metodologia rigurosa que se describen a continuación:

1.     Definición del universo de discurso  que contiene el valor máximo y mínimo de la variación de población.

2.     Segmentación del universo de discurso  en  intervalos de igual longitud

3.     Descripción cualitativa de los valores de variación de la población total como variable lingüística  (conjunto del conjunto difuso).

4.       Fuzzificación los datos de entrada o conversión de los valores numéricos a valores difusos, mediante la fórmula:

5.     Definición del valor pronosticado en su forma difusa . Para definir el valor pronosticado se calcula la matriz de operaciones y la matriz de criterios que mediante la operación min  se determina la relación difusa  que es modelo de primer orden de .

6.     Defuzzificación (proceso inverso de fuzzificar) de los resultados obtenidos. Se propone la fórmula:  

RESULTADOS Y DISCUSIÓN

Primer paso: Definición del universo de discurso  que contiene el valor máximo y mínimo de la variación de población, para definir el universo de discurso  , primero se definen el valor mínimo y máximo en la columna de variación de la población. Se encontró el valor máximo que se denota por  y el valor mínimo denotado con  , se define el universo de discurso con la fórmula:  donde  y  son dos números positivos, escogemos  y . Luego el universo de discurso es: 

Segundo paso: Segmentación del universo de discurso  en  intervalos de igual longitud, se segmentó el universo de discurso  en   intervalos de igual longitud:  , con . Obteniendo los intervalos: ;

; ; ; . Tomando en cuenta que el pronóstico con series de tiempo difusas presenta el menor error promedio, se halló los puntos medios de cada uno de los intervalos: , , , , .

Tercer paso: Descripción cualitativa de los valores de variación de la población total como variable lingüística  (conjunto del conjunto difuso). A cada valor lingüístico le corresponde una variable difusa que, de acuerdo con una regla, se asignará contra un conjunto difuso. Es importante comprender que la noción de incertidumbre es distinta de la de probabilidad (Zadeh, 1975).


 

Tabla 1. Modelo de proyección de la población peruana 

Conjunto difuso

Variable lingüística “Desarrollo de la población”

= Nivel bajo de crecimiento poblacional (NBCP)

= Nivel invariante de crecimiento poblacional (NICP)

= Nivel moderado de crecimiento poblacional (NMCP)

= Nivel alto de crecimiento poblacional (NACP)

= Nivel muy alto de crecimiento poblacional (NMACP)

 

La tabla 1 muestra los conjuntos difusos que están definidos sobre el universo de discurso . En este caso el “Desarrollo de la población” es una variable lingüística que asume los valores lingüísticos = Nivel bajo de crecimiento poblacional (NBCP),  = Nivel invariante de crecimiento poblacional (NICP), = Nivel moderado de crecimiento poblacional (NMCP), = Nivel alto de crecimiento poblacional (NACP), = Nivel muy alto de crecimiento poblacional (NMACP). A cada valor lingüístico le corresponde una variable difusa que, según una regla determinada, se asigna a un conjunto difuso correspondiente que determina el significado de dicha variable. Por ejemplo, el valor lingüístico “nivel bajo de crecimiento poblacional” está dado por la variable difusa , donde  es un conjunto difuso definido en el dominio  del universo de discurso .

Cuarto paso: Fuzzificación los datos de entrada o conversión de los valores numéricos a valores difusos, mediante la fórmula:     

Donde:

variación poblacional

: puntos medio de los intervalos

 es una constante que asegura la conversión de los valores definidos en los valores difusas o su pertenencia al intervalo (.

Si se acepta el valor de  como punto medio del intervalo correspondiente, el conjunto difuso , se define de la siguiente manera:

 

1.00000/

(0.00010/

(0.00002/

(0.00001/

0.00001/

0.00010/

(1.00000/

(0.00010/

0.00002/

0.00001/

0.00002/

(0.00010/

(1.00000/

0.00010/

0.00002/

0.00001/

(0.00002/

(0.00010/

1.00000/

0.00010/

0.00001/

(0.00001/

(0.00002/

0.00010/

1.00000/

 

Figura 1. Función de pertenencia de los valores del conjunto difuso de la variable lingüística “Desarrollo de la población”

Quinto paso: Definición del valor pronosticado en su forma difusa .

Se calcula la matriz de relaciones difusas  mediante el cual se da un pronóstico del crecimiento de la población en el año siguiente. En este caso se selecciona   y se define la matriz de operaciones  (que es la matriz de variación difusa en la población total sobre los años , , , ) y la matriz de criterios  (que es la matriz de variación difusa para el año ). Así para , se utiliza los datos de los 6 años anteriores (se debe conocer la población total del año  para encontrar la variación del año .

Posterior a esto se halla   que es una relación difusa y se denomina modelo de primer orden de  donde  es una operación ; luego se define el valor pronosticado  para el año  en forma difusa:

  ,

Por ejemplo, para pronosticar la población total para el año 1956 se establecerá la matriz de operaciones:

 

0.026

0.064

0.005

0.002

0.001

0.021

0.088

0.006

0.002

0.001

 

0.017

0.138

0.006

0.002

0.001

 

0.014

0.263

0.007

0.002

0.001

 

La matriz de criterios:

0.012

0.644

0.009

0.002

0.001

 

Se calcula la matriz de relaciones difusas ;  es una operación min , que es el modelo de primer orden de .

 

0.012

0.064

0.005

0.002

0.001

0.012

0.088

0.006

0.002

0.001

 

0.012

0.138

0.006

0.002

0.001

 

0.012

0.263

0.007

0.002

0.001

 

Luego se define el valor pronosticado  para el año 1956 en forma difusa:

0.012

0.263

0.007

0.002

0.001

 

Sexto paso: Defuzzificación (proceso inverso de fuzzificar).

Para defuzzificar los resultados obtenidos o conversión de los valores difusos en valores numéricos se propone la fórmula:   (crecimiento esperado de la población).

Donde:

: es el valor calculado de función de pertenencia para el año de pronóstico .

 : son los puntos medios de los intervalos.

Para estimar la población total pronosticada para el año 1956, se calcula el crecimiento esperado:   (según la figura 1, se interpreta que para el año 1956 el nivel de crecimiento poblacional peruano fue invariante con un grado de pertenencia de 0.90). Luego se calcula la población pronosticada para el año 1956:

 millones.

Finalmente los pronósticos de la población peruana obtenidos con series de tiempo difusas (STD) se compara con el modelo lineal (ML):  y el modelo logístico (MLOGI):   . Los resultados se muestra en la tabla 2.

Tabla 2. Comparación de pronóstico de la población peruana entre los modelos de proyección poblacional: series de tiempo difusas (STD), modelo lineal (ML) y el modelo logístico (MLOGI).

 

 

 

Año

 

 

Población observada

Población pronosticada con series de tiempo difusas

(STD)

Población pronosticada con el modelo lineal

(ML)

Población pronosticada con el modelo logistico

(MLOGI)

 

 

Error relativo (STD)

 

 

Error relativo (ML)

 

 

Error relativo (MLOGI)

1956

9098885

9098746.7

9519545.85

9228338.84

0.000015199

0.04623213

0.01422744

1960

10153262

10127507.2

10908233.8

10383666.8

0.002536607

0.07435756

0.02269269

1970

13453692

13429789.6

14379953.7

13681000.9

0.001776641

0.06884814

0.01689565

1980

17531898

17535319.7

17851673.5

17473695.9

0.000195169

0.01823964

0.00331978

1990

22031627

22018655.3

21323393.4

21558828.5

0.000588778

0.03214622

0.02145999

2000

26390142

26448748.9

24795113.3

25659112.7

0.002220788

0.06044032

0.02770085

2010

28692915

28681410.3

28266833.2

29493196.6

0.000400959

0.01484972

0.02789126

2020

32625948

32658503.8

31738553

32848109.9

0.00099785

0.02719906

0.00680936

2030

35792079

35803032.3

35210272.9

35617428.9

0.000306026

0.01625516

0.00487957

2040

38023290

38058262.2

38681992.8

37795402

0.000919757

0.01732367

0.00599338

2050

39363351

39431252.8

42153712.6

39444028

0.001725001

0.0708873

0.00204955

 

 

 

 

 

 

Tasa media de error de pronóstico (TMEP)

0.00106207

0.04061627

0.01399268

Tasa media de error de pronóstico porcentual (TMEP %)

0.106207048

4.06162663

1.39926845

 

Donde se observa que la tasa media de error de pronóstico porcentual con series de tiempo difusas es de 0.106 %, la población pronosticada con el modelo lineal  presenta una tasa media de error de pronóstico porcentual de 4.06% y el modelo logístico  tiene una tasa media de error de pronóstico porcentual de 1.40%, concluyendo que el método de pronóstico con series de tiempo difusas presenta una mayor precisión con una tasa media de error de pronóstico porcentual de 0.106%.

los resultados del pronóstico de la población peruana con series de tiempo difusas han demostrado que tienen una buena aproximación a diferencia del modelo lineal y el modelo logístico, el modelo de proyección poblacional con series de tiempo difusas, toma en cuenta la tendencia de población en estudio, logrando una mayor precisión frente al modelo lineal y el modelo logístico, demostrando que el pronóstico de la población con las series de tiempo difusas logra pronósticos más precisos para cualquier horizonte lejano, coincidiendo con Stevenson y Porter (2009), quienes concluyen que el método de series de tiempo difusas da como resultado una mayor precisión en los pronósticos que los modelos existentes. Song y Chissom (1993) mencionan la superioridad en los pronósticos con series de tiempo difusas, Abbasov y Mamedova, 2003; Argote-Cusi, 2018, observan que las series de tiempo difusas permiten tener en cuenta la tendencia, la no linealidad de la población y tasas de crecimiento, logrando pronósticos más precisos, Sasu (2010) concluye que las series de tiempo difusas ayudan a realizar cálculos de pronóstico para cualquier perspectiva lejana, concordando con los resultados obtenidos en este estudio.

CONCLUSIONES

Se concluye que se logró el propósito de esta investigación que es modelar la proyección poblacional con series de tiempo difusas obteniendo el modelo de proyección de la población peruana (variable lingüística):

,  definiendo el universo de discurso , este modelo de proyección poblacional presenta mayor precisión y se concluye que es posible realizar un pronóstico más preciso dado que el modelo toma en cuenta las tendencias de la población analizada.

REFERENCIAS BIBLIOGRÁFICAS

Abbasov, A., y Mamedova, M. (2003). Application of fuzzy time series to population forecasting. Vienna University of Technology, 12, 545-552.

Aluja, J. (2000). Génesis de una teoría de la incertidumbre. Fundación General de la Universidad Autónoma de Madrid.

Argote-Cusi, M. (2018). El uso de lógica difusa en proyecciones de población: el caso de México. Papeles de población, 24(95), 273-301.

Chen, S.-M., y Hsu, C.-C. (2004). A new method to forecast enrollments using fuzzy time series. International Journal of Applied Science and Engineering, 2(3), 234-244.

Chen, S.-M., y Hwang, J.-R. (2000). Temperature prediction using fuzzy time series. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 30(2), 263-275.

García, J., Sánchez, A., Hidalgo, N., y Benavides, H. (2019). Perú: Estimaciones y proyecciones de la población Nacional, 1950-2070. Boletín de Análisis Demográfico(38).

Jilani, T., Burney, S., y Ardil, C. (2008). Multivariate high order fuzzy time series forecasting for car road accidents. International Journal of Computer and Information Engineering, 2(6), 2038-2043.

López Vargas, G., & Rodríguez García, J. C. (2021). Enfermería en Contexto de Trabajo en Salud Pública en América Latina. Revista Científica De Salud Y Desarrollo Humano, 2(1), 51–66. https://doi.org/10.61368/r.s.d.h.v2i1.14

Mathews, J. y Fink, K.  (2000). Métodos Numéricos. Madrid: Prentice Hall.

Martínez Pérez , S. I. (2022). La Protección de la Propiedad Intelectual y la Piratería en Línea. Estudios Y Perspectivas Revista Científica Y Académica , 2(1), 74–95.

https://doi.org/10.61384/r.c.a.v2i1.10

Rincón, M.  (1989). Teoria y metodos para la preparacion de estimaciones y proyecciones de poblacion: insumos para la planificacion.

Sasu, A. (2010). An application of fuzzy time series to the Romanian population. Bulletin of the Transilvania University of Brasov. Mathematics, Informatics, Physics. Series III, 3, 125.

Abbasov, A., y Mamedova, M. (2003). Application of fuzzy time series to population forecasting. Vienna University of Technology, 12, 545-552.

Aluja, J. (2000). Génesis de una teoría de la incertidumbre. Fundación General de la Universidad Autónoma de Madrid.

Argote-Cusi, M. (2018). El uso de lógica difusa en proyecciones de población: el caso de México. Papeles de población, 24(95), 273-301.

Chen, S.-M., y Hsu, C.-C. (2004). A new method to forecast enrollments using fuzzy time series. International Journal of Applied Science and Engineering, 2(3), 234-244.

Chen, S.-M., y Hwang, J.-R. (2000). Temperature prediction using fuzzy time series. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 30(2), 263-275.

Cruz Rosas, J., & Oseda Gago, D. (2022). Design thinking en la creatividad de los estudiantes de administración de empresas, en una universidad de Trujillo – 2020. Emergentes - Revista Científica, 2(1), 57–70. https://doi.org/10.37811/erc.v1i2.13

Chavarría Oviedo, F. A., & Avalos Charpentier, K. (2022). English for Specific Purposes Activities to Enhance Listening and Oral Production for Accounting . Sapiencia Revista Científica Y Académica , 2(1), 72–85. https://doi.org/10.61598/s.r.c.a.v2i1.31

García, J., Sánchez, A., Hidalgo, N., y Benavides, H. (2019). Perú: Estimaciones y proyecciones de la población Nacional, 1950-2070. Boletín de Análisis Demográfico(38).

Jilani, T., Burney, S., y Ardil, C. (2008). Multivariate high order fuzzy time series forecasting for car road accidents. International Journal of Computer and Information Engineering, 2(6), 2038-2043.

Mathews, J. y Fink, K.  (2000). Métodos Numéricos. Madrid: Prentice Hall.

Rincón, M.  (1989). Teoria y metodos para la preparacion de estimaciones y proyecciones de poblacion: insumos para la planificacion.

Sasu, A. (2010). An application of fuzzy time series to the Romanian population. Bulletin of the Transilvania University of Brasov. Mathematics, Informatics, Physics. Series III, 3, 125.

Sethi, P., Sonawane, S., Khanwalker, S., Keskar, R. B. (2017). Automatic text summarization of news articles. 2017 International Conference on Big Data, IoT and Data Science (BID), pp. 23–29.

Song, Q., y Chissom, B. (1993). Forecasting enrollments with fuzzy time series—Part I. Fuzzy sets and systems, 54(1), 1-9.

Song, Q., y  Chissom, B. (1994). Forecasting enrollments with fuzzy time series—Part II. Fuzzy sets and systems, 62(1), 1-8.

Stevenson, M.,  Porter, J. (1972). Fuzzy time series forecasting using percentage change as the universe of discourse. Change, 1971(3.89), 464-467.

Stevenson, M.,  Porter, J. (1972). Fuzzy time series forecasting using percentage change as the universe of discourse. Change, 1971(3.89), 464-467.

Tabares, H., y Hernández, J. (2009). Aproximación por lógica difusa de la serie de tiempo: demanda diaria de energía eléctrica. Revista Facultad de Ingeniería Universidad de Antioquia(47), 209-217.

Trinidad, A. (2014). Modelos de crecimiento en biología, su significado biológico y selección del modelo por su ajuste. Universidad Auntónoma Metropolitana-Iztapalapa.

Zadeh, L. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

Zadeh, L. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information sciences, 8(3), 199-249.

 



[1] Autor principal.

Correspondencia: [email protected]