BIODIESEL PRODUCTION FROM REFINED PALM
OIL THROUGH TRANSESTERIFICATION: EFFECT
IN A PILOT THERMAL PLANT
PRODUCCIÓN DE BIODIESEL A PARTIR DE ACEITE DE
PALMA REFINADO MEDIANTE TRANSESTERIFICACIÓN:
EFECTO EN UNA PLANTA TÉRMICA PILOTO
Jorge Vicente Guzmán Laverde
Universidad ECCI – Colombia
Brayan Ignacio Cardozo Miranda
Universidad ECCI - Colombia
William Alfonso Vargas Correa
Universidad ECCI – Colombia
Jhonatan Ospina Molina
Universidad ECCI – Colombia
Andrea Aparicio Gallo
Universidad ECCI - Colombia
pág. 5537
DOI: https://doi.org/10.37811/cl_rcm.v8i2.10967
Biodiesel production from refined palm oil through transesterification: effect
in a pilot thermal plant
Jorge Vicente Guzmán Laverde 1
jorgev.guzmanl@ecci.edu.co
https://orcid.org/0009-0007-5991-3065
Universidad ECCI
Colombia
Brayan Ignacio Cardozo Miranda
bcardozom@ecci.edu.co
https://orcid.org/0009-0000-5540-0130
Universidad ECCI
Colombia
William Alfonso Vargas Correa
wvargasc@ecci.edu.co
https://orcid.org/0009-0008-5023-221X
Universidad ECCI
Colombia
Jhonatan Ospina Molina
jospinam@ecci.edu.co
https://orcid.org/0009-0003-4218-2447
Universidad ECCI
Colombia
Andrea Aparicio Gallo
aapariciog@ecci.edu.co
https://orcid.org/0000-0002-3425-3693
Universidad ECCI
Colombia
ABSTRACT
This article presents the biodiesel production process from refined palm oil (RPO) through
transesterification with ethanol and investigates its impact on a pilot thermal plant, encompassing both
physical and environmental characterizations. The study adheres to the ASTM D 6751 standard, which
delineates specifications for non-fossil origin fuels. The results indicate that biodiesel derived from RPO,
when mixed with diesel in various proportions, exhibits significant potential, as its properties align with
quality standards, particularly concerning power generation and gas emissions in the pilot thermal plant at
ECCI University.
Keyword: biodiesel production, refined palm oil, transesterification, ethanol, pilot thermal plant
1
Autor principal.
Correspondencia: jorgev.guzmanl@ecci.edu.co
pág. 5538
Producción de biodiesel a partir de aceite de palma refinado mediante
transesterificación: efecto en una planta térmica piloto
RESUMEN
Este artículo presenta el proceso de producción de biodiesel a partir de aceite de palma refinado (RPO)
mediante transesterificación con etanol e investiga su impacto en una planta térmica piloto, abarcando
caracterizaciones tanto físicas como ambientales. El estudio se adhiere a la norma ASTM D 6751, que
delinea especificaciones para combustibles de origen no fósil. Los resultados indican que el biodiésel
derivado de RPO, cuando se mezcla con diésel en diversas proporciones, presenta un potencial significativo,
ya que sus propiedades se alinean con los estándares de calidad, particularmente en lo que respecta a la
generación de energía y las emisiones de gases en la planta térmica piloto de la Universidad ECCI.
Palabra clave: producción de biodiesel, aceite refinado de palma, transesterificación, etanol, planta térmica
piloto
Artículo recibido 15 marzo 2023
Aceptado para publicación: 15 abril 2023
pág. 5539
INTRODUCTION
In Colombia, the renewable fuel industry is experiencing growth due to the increasing use of a 10% blend
with diesel, a percentage expected to rise over time [1]. This necessitates the exploration of biodiesel
production from conventional raw materials such as palm, soy, and corn [2].
The use of refined palm oil as an alternative fuel source has gained traction due to its ecological,
biodegradable, and non-toxic attributes, among others, which were stipulated in the Kyoto Protocol [3].
Additionally, biodiesel is produced cleanly and, in the event of accidental spills, is less polluting than fossil
fuels. Furthermore, it represents a 100% renewable and environmentally friendly source of energy [4,5].
This biofuel was produced using the transesterification method, the predominant technique in industrial
production when vegetable oils are employed as raw materials. This method entails the reaction of esters
(monoglycerides, diglycerides, and triglycerides) with alcohol (ethanol) and a catalyst, resulting in the
conversion of triglycerides into biodiesel and glycerin. This transesterification process [6,7] is illustrated in
Figure 1.
Figure 1. Chemical Reaction of Transesterification [8]
The physical and chemical characteristics of biodiesel produced from Refined Palm Oil (RPO) vary
depending on the properties of the raw materials used in its production. As a result, it was imperative to
subject the biodiesel to ASTM D 6751 standards, which are American standards established to regulate the
pág. 5540
quality of non-fossil fuel production, specifically focusing on biodiesel [9].
These tests were conducted utilizing certified and calibrated equipment and instruments provided by ECCI
University and the Uniagraria University Foundation of Colombia, ensuring the reliability of the obtained
results. Initially, the physical properties of density and viscosity were determined. Viscosity is defined as a
fluid's resistance to flow when subjected to an applied force. High-viscosity fluids exhibit resistance to
flow, while low-viscosity fluids flow easily. Viscosity is influenced by factors such as temperature and
pressure [10].
Subsequently, density was calculated, representing the mass contained within a specified volume. Density
can be expressed in absolute terms, denoting mass per unit volume, or relative terms, indicating the
relationship between a substance's density and a reference density. In the latter case, it results in a
dimensionless magnitude without units [10]. Following these tests, the flash point was determined, serving
as a descriptive parameter used to assess the flammability risk associated with biodiesel. The flash point
was determined in accordance with the ASTM D 93 standard [9].
Additionally, the acid number was determined, which is expressed as the neutralization value. It represents
the amount of potassium hydroxide (KOH) in milligrams required to neutralize the acids present in one
gram of oil. This measure signifies the degree of degradation due to oxidation and bears a direct correlation
with the thermal plant's operational lifespan and lubrication, in this context. Lastly, several parameters were
calculated, including the consumption rate per minute for various biodiesel-diesel mixtures (B0, B10, B20,
B30, B50, B70, and B100), gas emissions utilizing the BACHARAC model PCA-65 analyzer, and
mechanical power using the digital dynamometer LUTRON reference FG-5100.
The primary objective of this study is to produce biodiesel from refined palm oil through the process of
transesterification with ethanol, assessing its impact on a pilot thermal plant, and characterizing its physical
and environmental properties.
METHODOLOGY
This research falls into multiple categories, including exploratory, descriptive, correlational, and
pág. 5541
explanatory types. It encompasses the establishment of causal relationships between variables and
measurements to comprehend the resulting effects [11].
The procedural framework was designed in four distinct phases with the primary objective of producing a
high-quality product that adheres to the environmental emission standards outlined in the ASTM standard.
These sequential phases are visually depicted in Figure 2.
Figure 2. Methodological Phases [23]
The laboratory-scale production of biodiesel (Phase 1) was conducted as follows:
Initially, palm oil was subjected to heating at 110°C for a duration of 5 minutes. This step was aimed at
eliminating moisture content from the raw material. The palm oil was placed in a beaker on a heating plate
for this purpose. Subsequently, 150 ml of ethanol and 3.754 g of catalyst (KOH) were precisely measured
and added to an Erlenmeyer flask. A magnetic stirrer was introduced, and the solution was promptly covered
with aluminum foil to facilitate the dissolution of the catalyst flakes.
Following the dissolution, the catalyst-ethanol solution was combined with the vegetable oil in a 1000 ml
four-neck glass reactor. The reaction mixture was brought to a state of ebullition while ensuring the
connection of water supply hoses to the full reflux condenser to maintain the necessary cooling. The
pág. 5542
reaction proceeded for a duration of 90 minutes.
Upon completion of this period, any excess ethanol was distilled or removed from the reaction mixture until
it became turbid. Subsequently, the mixture was transferred to a separating funnel and allowed to stand for
a period of 24 hours. This duration allowed the formation of two distinct layers, as depicted in
Figure 3: one consisting of glycerin and the other of biodiesel.
Figure 3. Separation of biodiesel from glycerin [23]
Density
The measurement of density, denoted as mass per unit volume, is conducted in grams per milliliter at
ambient room temperature, as prescribed by the formula outlined in standard NTC 336 [13]. The procedure
encompasses the following sequential steps:
1. Preliminary calibration of the pycnometer at the ambient room temperature.
2. Computation of the pycnometer's precise volume.
3. Determination of the cubic expansion coefficient inherent to the pycnometer.
4. Subsequent utilization of these derived values in the aforementioned formula.
Viscosity (Kinematic At 40 °C)
Viscosity, in the kinematic sense, is evaluated in adherence to the ASTM D 445-06 [14] standard. This
involves the utilization of an Oswald viscometer. The operational steps are as follows:
1. Loading the specified sample into the Oswald viscometer.
pág. 5543
2. Inverting the viscometer instrument and subsequently applying suction to tube L.
3. Immersing tube N within the liquid sample and withdrawing the liquid until it reaches the
designated mark F.
4. Ensuring the drying of arm N and returning the viscometer to its upright vertical position.
5. Placement of the viscometer within a specialized receptacle affixed to the equipment, followed by
immersion into a controlled-temperature bath, with meticulous alignment to maintain verticality.
6. Allowing the liquid sample to attain a precisely regulated temperature of 40 °C, followed by a
stipulated 10-minute stabilization period.
7. Application of suction to tube N, accompanied by gentle agitation to ensure the liquid rises slightly
above the demarcation at point E.
8. Accurate measurement of the flow time, as the liquid traverses freely from the designated point E
to the F mark.
9. Repeating this measurement thrice and subsequently computing the average value to ensure robust
experimental results.
Figure 4 Cannon Fenske Viscometer [14]
pág. 5544
Acid Number
The determination of the ACID NUMBER adheres to the ASTM 664-07 standard [15], which involves
quantifying the quantity of milligrams of potassium hydroxide necessary to neutralize the free fatty acids
present within 1 gram of the sample, expressed in milligrams per gram (mg/g). The procedure begins by
selecting a sample size proportionate to the anticipated acidity percentage, as detailed in Table 1.
Subsequently, the potassium hydroxide solution is dissolved in 125 mL of titration solvent that has been
previously neutralized. To serve as a pH indicator, four (4) drops of phenolphthalein are introduced into the
solution. Simultaneously, the solution is stirred, and titration is performed with the potassium hydroxide
solution until reaching the endpoint, characterized by the emergence of a clear solution. This method allows
for the accurate determination of the ACID NUMBER, a vital parameter in the characterization of sample
acidity.
Table 1 Mass of test proportion
Percentage of acidity
expected
Mass of test portion g
Concentration of alkali
solution
<1
28,0
0,05
1 a 4
7,0
0,10
4 a 15
2,5
0,25
15 a 75
0,5
0,50
>75
0,1
0,50
The Flame Point
Determination follows the guidelines outlined in the ASTM D 93-07 standard. This test employs a
dynamic methodology that relies on specific heating rates, and its accuracy is contingent upon precise
measurement techniques.
The procedure entails filling the equipment container up to a predetermined mark, which is subsequently
sealed with a lid of precise dimensions. The sample within the container is subjected to heating at a
specific stirring rate. At regular intervals, the sample is exposed to an ignition source while agitation is
pág. 5545
momentarily interrupted. The flame point is determined when a flame becomes apparent, and the
corresponding temperature reading on the thermometer is recorded as the flame point value.
This method provides a reliable means of assessing the flame point, a critical parameter, while adhering
to standardized protocols in accordance with ASTM D 93-07.
Figure 5 Flame point reading [12]
Table 2 presents the physical and chemical criteria that biodiesel must conform to, as specified by ASTM
664-0, ASTM D 93-07, NTC 336, and ASTM D 445-06 standards. The table includes the respective
units of measurement and outlines the minimum requirements for each characteristic.
Table 2. Biodiesel characterization [16]
PROPERTY
UNIT
REQUIREMENT
Density at 15 ° C

860-900
Viscosity (kinematic at
40 ° C)

1,9 – 6,0
Acid Number
mg KOH / g
0,5 Maximum
Flash point
° C
120 Minimum
pág. 5546
Consumption
Fuel consumption testing is conducted within the pilot thermal facility at ECCI University. This testing
occurs subsequent to the successful production of 25 kilograms of biodiesel with the optimal laboratory-
level characteristics. Figure 6 illustrates the methodology employed during the characterization process,
providing insights into the testing procedure.
Figure 6. Procedure for characterization of Biodiesel consumption [23]
Environmental
For the assessment of gases discharged from the boiler utilizing various biodiesel-diesel blend ratios, a
portable BUCHARAC model PCA-65 apparatus was employed. A total of five (5) readings were recorded
for each biofuel mixture, with adherence to the parameters delineated in Table 3 [17]. This evaluation was
conducted as part of the environmental assessment.
Table 3. Gas Analyzer Measurement Parameters
PARAMETER
SENSORS ACCURACY
MEASUREMENT
RANGE
O2 oxygen

0 -20,9%°C Auto
calibration
Ambient temperature ° C

0 -537°C
Chimney gas
temperature ° C
+/- 15,5 in 0 -123°C
+/- 14,5 in 124 -249°C
+/- 13,5 in 250 -1093°C
0 -1093°C
Carbon monoxide

0 -2000 ppm
Draft pressure in the
+/- 1%
-8¨- +8 in w.c.
pág. 5547
The environmental operating conditions
must be:
versatility
Room temperature 0-40°C
Relative humidity 20 - 80%
Integrated dot printer
RESULTS AND DISCUSSION
The results obtained from the characterization of biodiesel at the pilot plant and laboratory level are shown
in table number 4.
Table 4. Results obtained from the characterization of biodiesel [23]
PROPERTY
UNIT
REQUIREMENT
RESULTS
(LABORATORY)
RESULTS
(PLANT)
Density at 15 °
C

860-900
875
876
Viscosity
(kinematic at 40
° C)

1,9 – 6,0
4,8
4,81
Acid Number
mg KOH / g
0,5 Maximum
0,42
0,44
Flash point
° C
120 Minimum
183,5
185
The characterization of the biodiesel reveals its compliance with the stipulated requirements outlined in the
ASTM standard. This compliance extends to the density measurement conducted at 15°C, both at the
laboratory scale and during plant production. In fact, the density values obtained not only fall within the
specified range but also demonstrate negligible differences between them (875.876), indicating the
attainment of a higher thermal energy output [18].
Furthermore, the kinematic viscosity, determined to be 1.9 mm^2/s, aligns comfortably within the bounds
set by the ASTM standard. This is a noteworthy achievement as it enhances engine combustion, affording
optimal lubrication properties, and mitigating environmental damage in the event of spillage [19, 20].
pág. 5548
The acid number results obtained (0.42 and 0.44) closely approximate the values mandated by the ASTM
standard. This observation underscores the favorable quality of the biodiesel, a characteristic attributed to
the catalyst, alcohol, and recommended distillation purification processes employed during production [20].
In terms of the flame point result (183°C), it signifies the production of a biodiesel that is 50% safer than
conventional diesel, surpassing the minimum requirement as stipulated in the standard [21]. Figure 7
illustrates the outcomes of the experimental evaluation of biodiesel yield under various treatment
conditions, involving the excess alcohol-to-catalyst ratio.
Figure 7. Effect of the percentage of catalyst and excess alcohol on biodiesel yield. [2. 3]
Statistical analysis revealed significant differences (p = 0.013, 95% significance) among the treatments,
specifically between 150E1C (150% molar excess and 1% catalyst) and 200E1.5C, while no significant
differences were found between 200E1C and 150E1.5C in terms of yield percentage.
The highest yield, 66.7 ± 5.24%, was obtained from the 200E1.5C treatment (200% alcohol excess and
1.5% catalyst), while the 200E1C and 150E1.5C treatments yielded 59.6 ± 2.75% and 59.5 ± 6.15%,
respectively. The 150E1C treatment yielded the lowest at 50.7 ± 2.81%.
The results for biodiesel-diesel mixture consumption are illustrated in Figure 8
pág. 5549
Figure 8. Biodiesel consumption in a pilot thermal plant. [2. 3]
The data reveals that the B20 mixture exhibits the highest consumption at 3.83 L/min, while the B100
mixture demonstrates the best performance with the lowest consumption at 2.82 L/min. Examining the
data dispersion for each sample, it becomes evident that biodiesel consumption increases from the B0
mixture to the B20 mixture, after which it improves (decreases) from the B30 mixture to the B100
mixture. Moreover, the data dispersion for each sample is adjusted, indicating the statistical significance
of the results.
Table 5 presents a summary of gas emissions obtained from the gas analyzer installed in the chimney of
the pilot plant at ECCI University, along with biodiesel consumption and emissions test details [23].
VARIABLE
B0
B10
B20
B30
B50
B70
B100
Consumo (1/min)
3,05
3,19
3,83
3,13
3,02
2,89
2,82
O2(%
5,34
3,36
4,08
3,72
4
5,02
4,16
CO2 (%)
12,38
13,04
12,78
12,78
12,66
11,80
12,58
CO (ppm)
6,92
6,53
6,75
6,54
6,56
6,57
6,52
NO (ppm)
55,60
55,20
52.80
54,00
43,60
42,20
43,80
NOx (ppm)
58,40
57,40
55,40
56,4
46
44,40
45,80
XS (%)
27,73
27,11
26,27
26,69
22,56
22,00
22,57
T (c°)
337,8
360
352,4
353,20
359,40
328,20
351,20
pág. 5550
The most fuel-efficient biodiesel-diesel blend in terms of consumption is B100, surpassing the B20
mixture, which proved to be the least efficient. In percentage terms, the B100 mixture exhibits a
remarkable 26.45% greater efficiency compared to the B20 blend.
Regarding the measurements conducted in the thermal plant, it is evident that the B0 mixture emits the
highest percentage of O2 into the environment, at 5.34%, while the B10 mixture emits the lowest O2
percentage at 3.36%. On average, the other mixtures hover around 4%, slightly lower than conventional
diesel.
In terms of CO2 emissions, the least environmentally favorable mixture is B10, emitting 13.04%,
whereas the B70 mixture emits the lowest amount of CO2 at 11.8%. The other mixtures show minimal
variation, averaging around 12.5%. This suggests that the biofuel produced is of good quality, as reduced
CO2 emissions contribute to improved boiler combustion [22].
No emissions (in ppm) range from 55.6 ppm for the B0 mixture to 42.2 ppm for the B70 mixture. The
remaining mixtures fall within this range, with an average of 55 ppm. The results exhibit low dispersion,
and emissions are not statistically significant.
Illustrations, Tables, Figures
Figures
Figure 1. Chemical Reaction of Transesterification [8]
Figure 2. Methodological Phases [23]
Figure 3. Separation of biodiesel from glycerin [23]
Figure 4 Cannon Fenske Viscometer [14]
Figure 5 Flame point reading [12]
Figure 6. Procedure for characterization of Biodiesel consumption [23]
Figure 7. Effect of the percentage of catalyst and excess alcohol on biodiesel yield. [2. 3]
Figure 8. Biodiesel consumption in a pilot thermal plant. [2. 3]
pág. 5551
Tables
Table 1 Mass of test proportion
Table 2. Biodiesel characterization [16]
Table 3. Gas analyzer measurement parameters
Table 4. Results obtained from the characterization of biodiesel [23]
Table 5 presents a summary of gas emissions obtained from the gas analyzer installed in the chimney of
the pilot plant at ECCI University, along with biodiesel consumption and emissions test details [23].
CONCLUSIONS
The biodiesel produced in this study exhibits several environmental advantages compared to fossil
diesel. It has a higher flash point (130°C) in contrast to petroleum-based diesel (52°C) [28], making it
less prone to combustion. Biodiesel is biologically active and biodegradable, unlike diesel, which is
challenging to break down. Additionally, it leads to lower carbon monoxide (CO) emissions due to
reduced ignition delay. Furthermore, its compatibility with international markets offers promising
avenues for commercialization.
A biodiesel was successfully manufactured through transesterification of refined palm oil using ethanol
as a catalyst. This biodiesel possesses properties that closely resemble those of traditional fossil diesel
and adheres to ASTM D 6751 standards.
In terms of fuel efficiency, B100 emerges as the most efficient biodiesel-diesel mixture, while the B20
blend proves to be the least efficient. The B100 mixture demonstrates an impressive 26.45% increase in
efficiency compared to the B20 blend.
These conclusions highlight the promising environmental and efficiency advantages of the biodiesel
produced in this study. The findings underscore its potential as a sustainable and eco-friendly alternative
to conventional diesel, with particular merit for B100 as a highly efficient fuel blend. Further research
and application in real-world contexts could further validate its viability and benefits.
pág. 5552
BIBLIOGRAPHIC REFERENCES
[1] F. Torossi, “Reacciones en contexto: la transesterificación en la producción de biodiesel a partir de
aceite de fritura usado,” An. la Real Soc. Española Química, vol. 102, no. 3, pp. 43– 49, 2006.
[2] S. Vásquez, “Lo que hay detrás del negocio de la Palma de Aceite,” Agronegocios e industria de
alimentos, 2016. [Online]. Available: https://agronegocios.uniandes.edu.co/2016/03/21/loque-hay-
detras-del-negocio-de-la-palma-de-aceite/. [Accessed: 20-Jun-2018].
[3] V. A. Yate Segura, “Evaluación del proceso de extracción del aceite de Jatropha curcas L. para la
producción de biodiésel,” Universidad Nacional de Colombia, 2013.
[4] M. A. Sierra S, “Evaluación del potencial de diferentes materias primas para la industria de
biocombustibles,” UNIAGRARIA, pp. 1–31, 2017.
[5] R. Ximhai, C. Castro-Martínez, ; Laura, I. Beltrán-Arredondo, and J. Carlos Ortiz-Ojeda,
“Producción de biodiesel y bioetanol: ¿Una alternativa sustentable a la crisis energética?
PRODUCCIÓN DE BIODIESEL Y BIOETANOL: ¿UNA ALTERNATIVA SUSTENTABLE
A LA CRISIS ENERGÉTICA?,” vol. 8, pp. 93–100, 2012.
[6] Federación Nacional de Biocombustibles de Colombia, “Federación Nacional de Biocombustibles
de Colombia,” Indicadores, 2015. [Online]. Available:
http://www.fedebiocombustibles.com/nota-web-id-2949.htm. [Accessed: 20-Jun-2018].
[7] M. de A. y D. Sostenible, “Protocolo de Kioto.[Online]. Available:
http://www.minambiente.gov.co/index.php/component/content/article/458-plantilla-cambioclimatico-14.
[Accessed: 20-Jun-2018].
[8] F. Osorio Múnera, Juan David; Correa Restrepo, “Valoración económica de costos ambientales:
Marco conceptual y métopdos de estimación,” Semest. Económico, vol. 7, no. 13, pp. 159–193,
2004.
[9] ASTM D6751-15c, “Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle
Distillate Fuels,” ASTM Int., vol. i, pp. 1–11, 2010.
[10] BP, “BP statical Review of world energy,” BP, p. 56, 2018.
pág. 5553
[11] ZUÑIGA MOBARAK MAXIMILIANO, “SIMULACIÓN DE UN REACTOR QUÍMICO PARA
LA OBTENCIÓN DE BIODIESEL A PARTIR DE LA TRANSESTERIFICACIÓN DE ACIETE
DE JATROPHA,” INSTITUTO POLITÉCNICO NACIONAL, 2014.
[12] U. Unidad de Planeación Minero Energética, “Proyección de Demanda de Energía Eléctrica en
Colombia, Ministerio de Minas y Energía - República de Colombia.” 2013.
[13] Enersinc, “Energy Demand Situation in Colombia,” 2017.
[14] N. Esteve Gómez, “Energización de las zonas no interconectadas a partir de las energias renovables
solar y eólica,” Pontificia Universidad Javeriana, 2011.
[15] A. Flórez, Hernán Jorge;, T. O. David, C. Quintero, and A. Gustavo., “Ha sido efectiva la promoción
de soluciones energéticas en las zonas no interconectadas (ZNI) en Colombia?: un análisis de la
estructura institucional,” Cuad. Adm., vol. 22, pp. 219–245, 2009.
[16] A. C. D. V. Pardal, “Obtención de biodiesel por transesterificación de aceites vegetales: nuevos
métodos de sínteses,” IPBeja Repos. Científico, pp. 1–323, 2012.
[17] K. V. Rodríguez Neyra and L. M. Villanueva Aliaga, “Producción de biodiesel a partir de aceite
vegetal usado en fritura por medio de la transesterificación de metanol.,” Univ. Nac. Trujillo, pp. 1–
75, 2011.
[18] H. García-Romero and L. Calderón-Etter, “Evaluación de la política de Biocombustibles en
Colombia.” 2012.
[19] U.S. Department of Energy, “Alternative Fuels Data Center: Natural Gas Fuel Basics,” 2014.
[Online]. Available: https://www.afdc.energy.gov/fuels/biodiesel_basics.html. [Accessed: 17Jul-
2018].
[20] I. Retana and J. Bonilla, “Transferecia tecnológica sobre las ventajas y desventajas de la utilización
de biodiesel,” p. 44, 2008.
[21] M. . FORERO, M. . GNECCO, and M. . TORRES, “PRODUCCIÓN DE BIODIESEL DE
MORICHE (Mauritia flexuosa) COMO ALTERNATIVA ENERGÉTICA PARA LAS REGIONES
pág. 5554
APARTADAS DE LA ORINOQUIA COLOMBIANA,” Orinoquia, vol. 7, no. 1, pp. 59–69, Jan.
2003.
[22] F. A. Avellaneda Vargas, “Producción y caracterización de biodiesel de palma y de aceite reclicado
mediante un proceso batch y un proceso continuo con un reactor helicoidal,” Univ. Rovira i Virgili,
pp. 1–244, Aug. 2010.
[23] G. L. F. G. M. Jorge, “Autores.” 2020.
[24] N. K. Patel, P. S. Nagar, and S. N. Shah, “Identification of Non-edible Seeds as Potential Feedstock
for the Production and Application of Bio-diesel,” vol. 3, no. 4, pp. 67–78, 2013.
[25] F. OLMEDO, “Producción de biodiesel con aceite de Jatropha Curcas - BiodiSol,” UNESCO
BRASIL, 2010. [Online]. Available: http://www.biodisol.com/biocombustibles/produccion-
debiodiesel-a-partir-de-aceite-de-jatropha-curcas/. [Accessed: 19-Mar-2018].
[26] M. M. Villadiego, Y. O. Roa, and L. Tejeda Benítez, “ESTERIFICACIÓN Y
TRANSESTERIFICACIÓN DE ACEITES RESIDUALES PARA OBTENER BIODIESEL,”
Luna Azul, no. 40, 2015.
[27] L. M. R. Santamaría and M. Á. Molano, “Transesterificación del aceite de palma con metanol por
medio de una catálisis heterogénea empleando un catalizador ácido,” Rev. Ing., vol. 0, no. 24, pp.
43–51, May 2006.
[28] P. Mazo, L. Rios, and G. Restrepo, Métodos alternativos para la producción de Biodisel. Microondas
y Ultrasonido, vol. 20, no. 1. 2007.
[29] E. Sendzikiene, K. Kazancev, and I. Kazanceva, “APPLICATION OF USED FOR FRYING OIL
FOR BIODIESEL FUEL PRODUCTION,” Ecol. Saf., vol. 8, pp. 62–70, 2014.
[30] C. Systems, “CT Systems | Biodiesel technologies,” 2018. [Online]. Available:
http://ctsystems.ua/?lang=es. [Accessed: 18-Jul-2018].
[31] E. A. Bulla Pereira, “Diseño del proceso de producción del biodiesel a partir de aceites de fritura,”
Universidad Nacional de colombia, 2014.
pág. 5555
[32] M. Rincón and D. Martínez, “Análisis de las propiedades del aceite de palma en el desarrollo de su
industria,” Rev. Palmas, vol. 30, no. 2, pp. 11–24, 2009.
[33] C. J. Claudia Marcela; Loaiza, Jair Leopoldo; Cortés, Producción de ésteres etílicos a partir de aceite
de palma RBD, vol. 26, no. 3. [Universidad Nacional de Colombia, Facultad de Ingeniería], 2006.
[34] M. G. Baca López and R. Paredes Rosario, “Análisis de factibilidad del cambio de petroleo residual
6 por biodiesel en calderas de vapor saturado de 400 BHP,” Medellín, 2011.
[35] Twenergy, “Biodiésel: ventajas y desventajas - Twenergy,” 2012. [Online]. Available:
https://twenergy.com/a/biodiesel-ventajas-y-desventajas-196. [Accessed: 08-Jun-2019].
[36] J. César, B. Prisco, J. Esteban, and O. Berrío, “DISEÑO Y CONSTRUCCIÓN DE UN
PROTOTIPO DE CALDERA QUE USA COMO COMBUSTIBLE CÁSCARA DE JATROPHA
CURCA,” 2010.
[37] E. A. Bulla-Pereira, C. A. Guerrero-Fajardo, and F. E. Sierra-Vargas, “Producción de biodiésel por
etanolisis utilizando aceites de fritura de hoteles y su uso en calderas pirotubulares,” Iteckne, vol.
12, no. 1, pp. 44–53, 2015.
[38] “Óxidos de Nitrógeno.” [Online]. Available: https://www.miteco.gob.es/es/calidad-yevaluacion-
ambiental/temas/atmosfera-y-calidad-del-aire/calidad-del-aire/salud/oxidosnitrogeno.aspx.
[Accessed: 08-Apr-2020].
[39] “Necesidades de aire de combustión | Academia Testo.” [Online]. Available:
http://www.academiatesto.com.ar/cms/necesidades-de-aire-de-combustion. [Accessed: 10-Apr2020].
[40] FAO, “Situación del mercado de biocombustibles,” Perspect. agrícolas, 2016.
[41] T. L. Alleman, R. L. McCormick, E. D. Christensen, G. Fioroni, K. Moriart, and J. Yanowitz,
“Biodiesel Handling and Use Guide (Fifth Edition),” 2016.
[42] M. Hajjari, M. Tabatabaei, M. Aghbashlo, and H. Ghanavati, “A review on the prospects of
sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel
utilization,” Renewable and Sustainable Energy Reviews, vol. 72. Pergamon, pp. 445–464, 01May-
2017.
pág. 5556
[43] W. B. Association, “GLOBAL BIOENERGY STATISTICS 2019,” pp. 1–58, 2019.
[44] A. da S. César, D. E. Werderits, G. L. de Oliveira Saraiva, and R. C. da S. Guabiroba, “The potential
of waste cooking oil as supply for the Brazilian biodiesel chain,” Renew. Sustain. Energy Rev., vol.
72, pp. 246–253, May 2017.
[45] M. G. Baca López and R. Paredes Rosario, “Análisis de pre factibilidad del cambio de petróleo
residual 6 por biodiesel en calderas de vapor saturado de 400 BHP,” 9th Lat. Am. Caribb. Conf. Eng.
Technol., pp. 1–10, 2011.
[46] C. C. Leiva Bautista, “La utilización del metanol como biocombustible,” Reflex. Real. Reflect., vol.
31, pp. 9–30, 2011.
[47] C. A. Cardona Alzate, “Perspectivas de la producción de biocombustibles en Colombia: contextos
latinoamericano y mundial.,” Rev. Ing., no. 29, pp. 109–120, 2009.
[48] A. Espinoza, S. Bautista, P. C. Narváez, M. Alfaro, and M. Camargo, “Sustainability assessment to
support governmental biodiesel policy in Colombia: A system dynamics model,” J. Clean. Prod.,
vol. 141, pp. 1145–1163, Jan. 2017.
[49] J. Barón, Manuel; Huertas, Isaac; Orjuela, “Gestión de la cadena de abastecimiento del biodiésel:
una revisión de la literatura,” INGENIERIA, vol. 18, no. 1, Universidad Distrital Francisco Jose de
Caldas, pp. 84–117, 2013.
[50] N. Plata, Vladimir Plata; Kafarov, Viatcheslav; Moreno, “Desarrollo de una metodología de
transesterificación de aceite en la cadena de producción de biodiesel a partir de microalgas,
PROSPECTIVA, vol. 7, no. 2, Universidad Autonoma del Caribe, pp. 35–41, 2009JA Posada-Duque
and CA Cardona-Alzate, “Analysis of the refining of glycerin obtained as a co-product in the
production of biodiesel,” Ing. Y Univ., Vol. 14, no. 1, pp. 9–28, 2010.
[51] J. A. Posada-Duque and C. A. Cardona-Alzate, “Análisis de la refinación de glicerina obtenida como
coproducto en la producción de biodiesel,” Ing. y Univ., vol. 14, no. 1, pp. 9–28, 2010.
[52] G. Knothe, J. Krahl, and J. H. Van Gerpen, The biodiesel handbook Online resource. 2010.
pág. 5557
[53] A. Macor and P. Pavanello, “Performance and emissions of biodiesel in a boiler for residential
heating,” Energy, vol. 34, no. 12, pp. 2025–2032, Dec. 2009.
[54] A. Ghorbani, B. Bazooyar, A. Shariati, S. M. Jokar, H. Ajami, and A. Naderi, “A comparative study
of combustion performance and emission of biodiesel blends and diesel in an experimental boiler,”
Appl. Energy, vol. 88, no. 12, pp. 4725–4732, Dec. 2011.
[55] G. Kilic, B. Sungur, B. Topaloglu, and H. Ozcan, “Experimental analysis on the performance and
emissions of diesel/butanol/biodiesel blended fuels in a flame tube boiler,” Appl. Therm. Eng., vol.
130, pp. 195–202, Feb. 2018.
[56] R. Hernández Sampieri, C. Fernández Collado, and P. Baptista Lucio, Metodología de la
investigación. McGraw Hill, 2006.
[57] R. Bono Cabré, “Diseños cuasiexperimentales y longitudinales,” in DISEÑO DE
INVESTIGACIÓN, Universida., 2009, p. 86.
[58] ICONTEC, “Normas técnicas colombianas,” in NORMAS, 2003.
[59] Google Maps, “No Title.” .
[60] I.E.E.H.N., “Manual Planta Termica Didáctica Universidad ECCI,” BOGOTA, 2010.
[61] U. Autónoma De Madrid, “Análisis de Datos 2o de Biología ANOVA unifactorial,” Madrid, 2018.
[62] D. C. Patiño, O. Fernando, and B. Delgado, “Comparación de emisiones de ACPM y biodiesel de
aceite de atún 1,” Pasto (Nariño), 2018.
[63] E. A. Bulla-Pereira, C. A. Guerrero-Fajardo, and F. E. Sierra-Vargas, “Producción de biodiésel por
etanolisis utilizando aceites de fritura de hoteles y su uso en calderas pirotubulares,” ITECKNE, vol.
12, no. 1, 2015.
[64] J. Laverde-Múnera, P. N. Alvarado-Torres, W. Ruiz-Machado, and C. Químicas, “Cinética de la
oxidación de un carbonizado de carbón Efecto del contenido de oxígeno y metano en la cinética de
oxidación de un carbonizado de carbón Artículo original,” Rev. Acad. Colomb. Cienc. Ex. Fis. Nat,
vol. 41, no. 159, pp. 221–229, 2017.
pág. 5558
[65] A. Ghorbani, B. Bazooyar, A. Shariati, S. M. Jokar, H. Ajami, and A. Naderi, “A comparative study
of combustion performance and emission of biodiesel blends and diesel in an experimental boiler,”
Appl. Energy, vol. 88, no. 12, pp. 4725–4732, 2011. [66] Repsol, “Ficha técnica Diesel.”