pág. 561
D. H. Hubel and T. N. Wiesel (1962). Receptive fields, binocular interaction, and functional architecture
in the cat’s visual cortex. The Journal of Physiology, vol. 160, pp. 106–154.
D. Yang, C. Martínez, L. Visuña et al. (2021). Detection and analysis of COVID-19 in medical images
using deep learning techniques. Scientific Reports. Springer Nature.
I. Soriano, A. Ezponda, F. Mendoza, A. Igual, A. Paternain, J. Pueyo, and G. Bastarrika (2021).
Hallazgos en la tomografía computarizada de tórax en las fases evolutivas de la infección por
SARS-Cov-2. Radiología, vol. 63, no. 3, pp. 218–227.
K. Fukushima (1980). Neocognitron: a self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, vol. 36, no. 4, pp. 193–
202.
M. Oquab, L. Bottou, I. Laptev, and J. Sivic (2015). Is object localization for free? - Weakly-supervised
learning with convolutional neural networks. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, pp. 685–694.
M. Tygert, J. Bruna, S. Chintala, Y. LeCun, S. Piantino, and A. Szlam (2016). A mathematical
motivation for complex-valued convolutional networks. Neural Computation, vol. 28, no. 5, pp.
815–825.
N. Alam, M. Ahsan, M. Based, J. Haider and M. Kowalski (2021). COVID-19 Detection from Chest
X-ray Images Using Feature Fusion and Deep Learning. Sensors, vol. 21, pp. 1480.
R. Girshick, J. Donahue, T. Darrell and J. Malik (2014). Rich feature hierarchies for accurate object
detection and semantic segmentation. Proceedings of the 27th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2014, pp. 580–587.
S. Bhattacharya, P. Kumar, Q. Pham, T. Reddy, S. Rama, C. Lal and M. Alazab (2020). Deep Learning
and medical image processing for coronavirus (COVID-19) pandemic: A survey. Elsevier.
S. Minaee, R. Kafieh, M. Sonka, S. Yazdani and G. Jamalipour (2020). Deep-COVID: Predicting
COVID-19 from chest X-ray images using deep transfer learning. Elsevier.
Y. L. Boureau, J. Ponce and Y. LeCun (2010). A theoretical analysis of feature pooling in visual
recognition. Proceedings of the ICML.
Y. LeCun, L. Bottou, Y. Bengio and P. Haffner (1998). Gradient-based learning applied to document