pág. 2935
enfermedades en las cuales es crucial, contar con un temprano y acertado diagnóstico, pues en estos
casos se vuelve una cuestión de vida o muerte.
REFERENCIAS BIBLIOGRÁFICAS
Bronzino, J. D. (Ed.). (2018). The Biomedical Engineering Handbook: Four Volume Set. CRC Press.
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017).
Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639),
115-118.
Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing (4th ed.). Pearson.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & van der Laak,
J. A. W. M. (2017). A survey on deep learning in medical image analysis. Medical Image
Analysis, 42, 60-88.
Moon, T. K., & Stirling, W. C. (2000). Mathematical Methods and Algorithms for Signal Processing.
Prentice Hall.
Oppenheim, A. V., & Schafer, R. W. (2014). Discrete-Time Signal Processing (3rd ed.). Pearson.
Pham, D. L., Xu, C., & Prince, J. L. (2000). Current methods in medical image segmentation. Annual
Review of Biomedical Engineering, 2(1), 315-337.
Rangayyan, R. M. (2015). Biomedical Signal Analysis: A Case-Study Approach. Wiley-IEEE Press.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going
deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 1-9.
Van der Knaap, M. S., & Valk, J. (2013). Magnetic Resonance of Myelination and Myelin Disorders.
Springer.