pág. 11134
REFERENCIAS BIBLIGRAFICAS
Billinghurst, M., Belcher, D., Gupta, A., & Kiyokawa, K. (2003). Communication behaviors in
colocated collaborative AR interfaces. International Journal of Human-Computer Interaction,
16(3), 395-423. https://n9.cl/hyz6y
Black, P., & Wiliam, D. (1998). Assessment and Classroom Learning. Educational Assessment,
Evaluation and Accountability, 21(1), 7-74. https://n9.cl/wjnal
Bostrom N. (2014). Superintelligence: Paths, dangers, strategies. United Kingdom. Oxford University
press. https://n9.cl/3k5kj7
Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications.
Science, 358(6370), 1530-1534. https://n9.cl/voabt
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS Quarterly, 13(3), 319-340. https://n9.cl/1vahgj
Díaz L., S. M. (2014). Métodos mixtos de investigación. Monográficos de Investigación en Salud, 1(1),
5-13. Disponible en: https://n9.cl/az5mv3
Domingos, P. (2018). The master algorithm: How the quest for the ultimate learning machine will
remake our world. Basic Books.
Garrison, D. R., & Vaughan, N. D. (2019). Blended Learning in Higher Education: Framework,
Principles, and Guidelines. John Wiley & Sons. DOI: 10.1002/9781118269558
Gikandi, J. W., Morrow, D., & Davis, N. E. (2011). Online Formative Assessment in Higher Education:
A Review of the Literature. Computers & Education, 57(4), 2333-2351. https://n9.cl/gjs2o
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature machine
intelligence, 1(9), 389-399. https://acortar.link/ayW5EB
Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose
time has come. Educational Researcher, 33(7), 14-26. DOI: 10.3102/0013189X033007014
Kurzweil, R. (1994), La era de las máquinas inteligentes, México, CONACYT/Equipo Sirius Mexicana,
p. 504.