pág. 3694
Feng, S., Lin, S., Chiang, Y., Lu, M., & Chao, Y. (2023). Deep Learning-Based Hip X-ray Image
Analysis for Predicting Osteoporosis. Applied Sciences, 14(1), 133.
https://doi.org/10.3390/app14010133
García-Villar, C., & García-Santos, J. (2021). Indicadores bibliométricos para evaluar la actividad
científica. Radiología, 63(3), 228-235. https://doi.org/10.1016/j.rx.2021.01.002
Grechko, A. V., Yadgarov, M. Y., Yakovlev, A. A., Berikashvili, L. B., Kuzovlev, A. N., Polyakov, P.
A., Kuznetsov, I. V., & Likhvantsev, V. V. (2024). RICD: Russian Intensive Care Dataset.
General Reanimatology, 20(3), 22-31. https://doi.org/10.15360/1813-9779-2024-3-22-31
Gòmez Flores, N. E., Hernandez Cortes, E., Ramirez Vaquero, E. O., Moreno Sosa, S. M., & Vazquez
Evangelista, J. G. (2024). Antocianinas, más allá del Color y el pH: Una Revisión
Bibliométrica. Ciencia Latina Revista Científica Multidisciplinar, 8(5), 9053-9080.
https://doi.org/10.37811/cl_rcm.v8i5.14297
Guo, C., Cun, Y., Xia, B., Chen, S., Zhang, C., Chen, Y., Shan, E., Zhang, P., & Tai, X. (2024). An
analysis of stimulation methods used in rehabilitation equipment for children with cerebral
palsy. Frontiers In Neurology, 15. https://doi.org/10.3389/fneur.2024.1371332
Jiatuo, X., Tao, J., & Shi, L. (2024). Research status and prospect of tongue image diagnosis analysis
based on machine learning. Digital Chinese Medicine, 7(1), 3-12.
https://doi.org/10.1016/j.dcmed.2024.04.002
Omoumi, P., Ducarouge, A., Tournier, A., Harvey, H., Kahn, C. E., Verchère, F. L., Santos, D. P. D.,
Kober, T., & Richiardi, J. (2021). To buy or not to buy—evaluating commercial AI solutions in
radiology (the ECLAIR guidelines). European Radiology, 31(6), 3786-3796.
https://doi.org/10.1007/s00330-020-07684-x
Posit, PBC. (2024). RStudio 2024.09.1+394 “Cranberry Hibiscus” Release Notes. Recuperado de
https://posit.co
Ramesh, A., Kambhampati, C., Monson, J., & Drew, P. (2004). Artificial intelligence in medicine.
Annals Of The Royal College Of Surgeons Of England, 86(5), 334-338.
https://doi.org/10.1308/147870804290