pág. 11025
https://doi.org/10.1080/08839514.2022.2071406
Nimbalkar, A. A., & Berad, A. T. (2021). The increasing importance of AI applications in E-Commerce.
Vidyabharati International Interdisciplinary Research Journal, 13(1), 67–77.
https://www.viirj.org/vol13issue1/56.pdf
Niyogisubizo, J., Liao, L., Nziyumva, E., Murwanashyaka, E., & Nshimyumukiza, P. C. (2022). Predicting
student’s dropout in university classes using two-layer ensemble machine learning approach: A
novel stacked generalization. Computers and Education: Artificial Intelligence, 3, 1–12.
https://doi.org/10.1016/j.caeai.2022.100066
Okagbue, E. F., Ezeachikulo, U. P., Akintunde, T. Y., Tsakuwa, M. B., Ilokanulo, S. N., Obiasoanya, K.
M., Ilodibe, C. E., & Ouattara, C. A. T. (2023). A comprehensive overview of artificial intelligence
and machine learning in education pedagogy: 21 Years (2000–2021) of research indexed in the
scopus database. Social Sciences and Humanities Open, 8(1), 100655.
https://doi.org/10.1016/j.ssaho.2023.100655
Okoye, K., Nganji, J. T., Escamilla, J., & Hosseini, S. (2024a). Machine learning model (RG-DMML) and
ensemble algorithm for prediction of students’ retention and graduation in education. Computers
and Education: Artificial Intelligence, 6, 100205. https://doi.org/10.1016/j.caeai.2024.100205
Okoye, K., Nganji, J. T., Escamilla, J., & Hosseini, S. (2024b). Machine learning model (RG-DMML) and
ensemble algorithm for prediction of students’ retention and graduation in education. Computers
and Education: Artificial Intelligence, 6, 1–13. https://doi.org/10.1016/j.caeai.2024.100205
Opazo, D., Moreno, S., Álvarez-Miranda, E., & Pereira, J. (2021). Analysis of first-year university student
dropout through machine learning models: A comparison between universities. Mathematics, 9, 1–
27. https://doi.org/10.3390/math9202599
Palacios, C. A., Reyes-Suárez, J. A., Bearzotti, L. A., Leiva, V., & Marchant, C. (2021). Knowledge
discovery for higher education student retention based on data mining: Machine learning algorithms
and case study in chile. Entropy, 23, 1–23. https://doi.org/10.3390/e23040485
Porras, M., Lara, J. A., Romero, C., & Ventura, S. (2023). A Case-Study Comparison of Machine Learning
Approaches for Predicting Student ’ s Dropout from Multiple Online Educational Entities.
Algorithms, 16(554), 1–21. https://doi.org/10.3390/a16120554