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ABSTRACT 

The Collatz conjecture declares that every positive integer will eventually reach 1 when subjected to a 

simple iterative process: if the number is even, it is divided by 2, and if it is odd, it is multiplied by 3 

and then increased by 1. Despite the straightforward nature of these rules, a general proof of the 

conjecture remains elusive. For the above, this study introduces an alternative interpretation of the 

conjecture. This approach involves multiplying an odd integer N1 by 3 and subsequently adding the 

largest power-of-2 factor within N1. Repeated iterations of this alternative process show that any initial 

odd integer N1 will eventually convert into a power of 2, leading the sequence towards convergence. 

The behavior of the sequence was studied by representing the resulting integers as a power of 2 

multiplied by an odd component. Using this representation under the modified rules, we developed a 

structured proof framework that demonstrates the consistent reduction of the odd component’s relative 

value after each iteration, the accelerated increase of the power-of-2 factor’s relative value, and the 

absence of any divergent cycles or alternative behaviors. This analysis provides insights into the 

mechanics of convergence in the Collatz sequence and proposes a new perspective for understanding 

the conjecture’s underlying dynamics. 
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Monotonicidad y Convergencia en la Conjetura de Collatz: Una Nueva 

Perspectiva 
 

RESUMEN 

La conjetura de Collatz establece que todo entero positivo llegará a ser 1 si es sometido a un proceso 

iterativo simple: si el número es par, se divide entre 2, y si es impar, se multiplica por 3 y luego se suma 

1. A pesar de la naturaleza sencilla de estas reglas, no se ha podido demostrar de manera general la 

conjetura. Por lo anterior, este estudio presenta una interpretación alternativa de la conjetura. Este 

enfoque implica multiplicar un entero impar N1 por 3 y, posteriormente, sumar el factor-potencia de 2 

más grande de N1. Al repetir este proceso iterativo, cualquier entero impar inicial N1 se convertirá 

eventualmente en una potencia de 2, lo que lleva la secuencia hacia la convergencia. Se estudió el 

comportamiento de la secuencia representando los números enteros resultantes como una potencia de 2 

multiplicada por un componente impar. Utilizando esta representación bajo las reglas modificadas, 

desarrollamos un procedimiento que demuestra la reducción consistente del valor relativo del 

componente impar después de cada iteración, el aumento acelerado del valor relativo del factor-potencia 

de 2 y la ausencia de ciclos divergentes o comportamientos alternativos. Este análisis proporciona 

información sobre la mecánica de la convergencia en la secuencia de Collatz y propone una nueva 

perspectiva para comprender el comportamiento subyacente de la conjetura. 
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if 𝑛𝑡 is odd 

if 𝑛𝑡 is even 

INTRODUCTION  

The Collatz conjecture explores the behavior of a sequence initiated by any positive integer, where each 

subsequent term is generated according to the rules given in Eq. (1). The conjecture posits that this 

series always reaches 1 regardless of the chosen initial integer [7, 15].  

 

……………...….  ……. ……nt+1 {
3 · 𝑛𝑡 + 1,    
𝑛𝑡

2
 ,                 

                                        (1) 

 
For any positive integer nt, the Collatz sequence proceeds as follows: if nt  is even, the next term is 

obtained by dividing it by 2; if nt is odd, it is transformed by multiplying it by 3 and adding 1 [14]. The 

conjecture also implies that the followed sequence will always arrive to the trivial cycle “1-4-2-1” [2]. 

Originally proposed by Lothar Collatz in 1937, the Collatz conjecture is also known by several other 

names, including the 3n + 1 conjecture, the Ulam conjecture, Kakutani’s problem, the Thwaites 

conjecture, Hasse’s algorithm, the Syracuse problem or the hailstone sequence [1]. Although a formal 

proof of the conjecture remains elusive, extensive experimental evidence and heuristic arguments 

suggest that it is valid [5], and the conjecture has been verified for values up to 21000000 − 1 [6]. In 

addition, one of the most notable recent advances was made by Terence Tao, who proved that most 

orbits of the Collatz map attain almost bounded values [8, 13]. Finally, proving the Collatz conjecture 

is equivalent to demonstrating the absence of cycles other than “1-4-2-1” and of divergent orbits [10].  

Bottom-up Approach to the Collatz Conjecture 

A bottom-up representation of the Collatz conjecture suggests that any positive integer can be reached 

by applying an inverse form of the rules described in Eq. (1), these being 2 ⋅ 𝑛𝑡 and 
𝑛𝑡−1

3
 [12]. Starting 

from n1 = 1, both rules can be applied as long as only integers are produced.  

Table 1 illustrates the steps required to reach the first 10 integers, showing a complex behavior [3]. 

However, to prove the validity of the Collatz conjecture it suffices to prove that it holds true for every 

positive odd integer [9]. This occurs because each odd number nt can generate multiples of itself in the 

form 𝑛𝑡 ⋅ 2𝑥, demonstrating that every even number originates from an odd number. Accordingly, the 

formulas in this study are designed to generate only positive odd numbers. 
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Table 1 Steps required to generate the first 10 positive integers nt following the rules of the Collatz 
conjecture.  

nt Steps to Reach nt 

1 1 

2 1, 2 

3 1, 2, 4, 8, 16, 5, 10, 3 

4 1, 2, 4 

5 1, 2, 4, 8, 16, 5 

6 1, 2, 4, 8, 16, 5, 10, 3, 6 

7 1, 2, 4, 8, 16, 5, 10, 20, 40, 13, 26, 52, 17, 34, 11, 22, 7 

8 1, 2, 4, 8 

9 1, 2, 4, 8, 16, 5, 10, 20, 40, 13, 26, 52, 17, 34, 11, 22, 7, 14, 28, 9 

10 1, 2, 4, 8, 16, 5, 10 

 

Progression of the Bottom-Up Collatz Conjecture: Examples and Diagram 

Fig. 1 illustrates the initial integers that can be generated by starting from n1 = 1 and applying the rules 

of the bottom-up Collatz conjecture. The diagram indicates that the 
𝑛𝑡−1

3
 formula cannot be applied to 

all numbers or “branches”, but it consistently generates odd numbers when used. As an example, the 

equations in the figure detail the steps taken to reach the numbers 5 and 3.  

Figura 1. a) Representation of the first integers that can be generated by starting from n1 = 1 and 
following both rules of the bottom-up Collatz conjecture. Black arrows indicate the doubling of the 
current number (2⋅n_t), while red arrows represent the use of the (n_t-1)/3 formula. b) Algebraic 
expressions that indicate the steps required to reach number 5. c) Algebraic expressions that indicate 
the steps needed to reach number 3. 
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(2) 

(3) 

General Formula to Represent the Steps Required to Generate Any Odd Number nt 

The reverse Collatz iterations used to reach an odd integer can be represented as functions [11]. As 

illustrated in Fig. 1, the steps needed to reach any odd number n t starting from n1 = 1 can be represented 

by the following general formula: 

 

𝑛𝑡 =
2α − 2𝑥  − 2𝑦·31 − 2𝑧·32 − … − 2𝑤·3β−2 − 3β−1

3β
,                              

 
where: nt, α, β, x, y, z, …, w ∈ Z+; α > x > y > z > … > w. Here, α is the total number of times the 

transformation 2·nt was applied, while β is the total number of times the 
𝑛𝑡−1

3
  formula was applied.  

Eq. (2) captures the iterative process of the bottom-up Collatz sequence to generate any odd integer nt. 

The exponents α, x, y, z, …, w denote the cumulative number of times that nt was multiplied by 2 between 

successive applications of the 
𝑛𝑡−1

3
 formula. For example, the first step to generate 17 from 𝑛1 = 1 

involves doubling four times before applying 
𝑛𝑡−1

3
 for the first time, which corresponds to α – x = 4. 

Then, between the first and second applications of 
𝑛𝑡−1

3
, nt is doubled three times, so 𝑥 − 𝑦 = 3, and so 

on. 

Alternative Interpretation of the Collatz Conjecture  

The terms of Eq. (2) can be rearranged to yield Eq. (3), in which N1 is an initial odd positive integer.  

𝑁1 · 3β + 20 · 3β−1 + 2𝑤 · 3β−2 + ⋯ + 2𝑧 · 32 + 2𝑦 · 31 + 2𝑥 · 30 = 2α,        

 
where: N1, α, β, x, y, z, …, w ∈ Z+; α > x > y > z > … > w. Here, α represents the total number of times 

the transformation 2·nt was applied, while β is the total number of times the 
𝑛𝑡−1

3
  formula was applied. 

Transformation of Odd Positive Integers N1 Into Powers of 2 Via Iteratively Multiplying by 3 and 

Adding a Power-of-2 Factor 

Based on Eq. (3), an odd positive integer N1 can be transformed into a power of 2 by applying the 

following iterative steps:  

• Multiply N1 by 3 and add 1 (20) to obtain an even integer N2. 

• For each subsequent iteration, multiply Nt by 3 and add the largest power of 2 that is a factor of Nt. 
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(4) 

• Repeat this process until Nt transforms into a power of 2, denoted 2α. 

The iterative process is represented by Eq. (4):  

𝑁𝑡+1 = 3 · 𝑁𝑡 + 2𝑘𝑡,                                                        

where 2𝑘𝑡 is the biggest power of 2 that divides Nt.  

As an example, Table 2 summarizes the steps that must be followed to convert odd positive integers N1, 

from 3 to 13, into powers of 2. Each positive integer Nt is expressed as a power of 2 multiplied by an 

odd number.   

Table 2. Summary of the transformation of positive odd integers N1 from 3 to 13 by multiplying each 
by 3 and adding the largest power of 2 that divides it (including 2 0). This cycle is repeated until the 
integer becomes a power of 2. Each resulting integer is represented as a power of 2 multiplied by an 
odd factor.  

N1  3·N1  + 1 3·N2  + 2a 3·N3  + 2b  3·N4  + 2c  

3 1·9+1 = 21·5         → 21·15+21 = 25     

5 1·15+1 = 24       

7 1·21+1 = 21·11   → 21·33+21 = 22·17   → 22·51+22 = 24·13  → 24·39+24 = 27·5 → 211 

9 1·27+1 = 22·7      → 22·21+22 = 23·11   → 23·33+23 = 24·17  → 24·51+24 = 26·13 → 29·5 → 213 

11 1·33+1 = 21·17   → 21·51+21 = 23·13   → 23·39+23 = 26·5    → 26·15+26 = 210 

13 1·39+1 = 23·5      → 23·15+23 = 27     

Note: For N1 = 7 and N1 = 9, the final steps were simplified. 

 
Monotonic Reduction and Convergence of the Alternative Interpretation of the Collatz 

Conjecture  

Eq. (4) presents a unique scenario that cannot be replicated by iteratively multiplying by larger odd 

factors at the start of each cycle (e.g., 5·Nt + 2𝑘𝑡, 7·Nt + 2𝑘𝑡, etc.). This behavior arises because the 

rules of the Collatz conjecture allow the power-of-2 factor of Nt to increase with each cycle, including 

a growth in the power-of-2 factor’s relative value.  

The following sections outline the key properties that explain why any initial positive odd integer N1 

can ultimately be transformed into a power of 2 (2α) by applying the steps of this alternative 

interpretation of the Collatz conjecture.  

Lemma 4.1 Iteratively adding the largest power-of-2 factor of an odd positive integer N1 will ultimately 

transform N1 into the closest power of 2 that is greater than N1. 
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Proof Every positive integer Nt can be uniquely factorized into a power of 2 multiplied by an odd 

component: 

𝑁𝑡 = 2𝑘𝑡⋅Ot, 

where Ot is the odd component of Nt, and 2𝑘𝑡 is the largest power-of-2 factor of Nt. 

Similarly, every positive integer Nt has a unique binary representation [4]:  

𝑁𝑡 = 2𝑎1 + 2𝑎2 + ⋯ + 2𝑎𝑛, 

where 0 ≤ a1 < a2 < … < an.  

The smallest term of the binary representation, 2𝑎1, is equal to the biggest power-of-2 factor, 2𝑘𝑡. 

This can be proven if the previous formula is rewritten to resemble a power-of-2 factor multiplied by 

an odd component:  

𝑁𝑡 = 2𝑎1 ⋅ (1 + 2𝑎2−𝑎1 + ⋯ + 2𝑎𝑛−𝑎1),  

where the term in parentheses is equal to the odd component Ot.  

After one iteration, upon summing 2𝑎1 (or equivalently 2𝑘𝑡) to Nt, 2𝑎1 doubles: 

𝑁𝑡+1 = 2𝑎1+1 + 2𝑎2 + ⋯ + 2𝑎𝑛 

After sufficient iterations, the initial 2𝑎1 becomes equal to 2𝑎2, and their sum produces 2𝑎2+1. This 

process continues, systematically combining and doubling terms until all binary terms coalesce 

into 2𝑎𝑛+1, the closest power of 2 that is greater than the positive odd integer N1. For a detailed example 

of this iterative process, refer to Table 3.  

Table 3. Test to analyze the effect over positive odd integers N1 from 3 to 15 (decomposed into series 
of sums of non-repeating powers of 2), after adding the smallest power of 2 found in their respective 
series. The cycle is repeated until the number becomes a power of 2.  

N1  N1  + 1 N2  + 2a N3  + 2b  

3 (1+2) 1+1+2 = 4       

5 (1+4) 1+1+4 = 2+4            → 2+2+4 = 8             

7 (1+2+4) 1+1+2+4 = 8                 

9 (1+8) 1+1+8 = 2+8            → 2+2+8 = 4+8     → 4+4+8 = 16 

11 (1+2+8) 1+1+2+8 = 4+8      → 4+4+8 = 16          

13 (1+4+8) 1+1+4+8 = 2+4+8 → 2+2+4+8 = 16   

15 (1+2+4+8) 1+1+2+4+8 = 16           
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Conclusion 

The iterative summation of the largest power-of-2 factor of the odd positive integer N1 successively 

eliminates all smaller binary terms of N1 by combining and doubling them, ultimately transforming the 

integer into the nearest power of 2 larger than N1. 

Lemma 4.2 Let N1 denote an odd positive integer undergoing the iterative transformation Nt+1 = 3·Nt 

+ 2𝑘𝑡, with 2𝑘𝑡 being the largest power-of-2 factor in Nt. Nt’s odd factor divided by its largest power-

of-2 factor, undergoes a strict monotonic reduction in each cycle.  

Proof Representing each number Nt as a power of 2 multiplied by an odd component: 

𝑁𝑡 = 2𝑘𝑡⋅Ot, 

where Ot is the odd component of Nt and 2𝑘𝑡 is the biggest power-of-2 factor of Nt. We seek to show 

that the value  
𝑂𝑡

2𝑘𝑡
 decreases in every iteration, demonstrating a monotonic reduction of the relative 

value of Ot in the sequence. 

Worst-Case Scenario Let N1∗ be a hypothetical positive odd integer that undergoes the iterative 

transformation Nt*+1 = 3·Nt* + 2𝑘𝑡∗. Assume that in this process only consecutive powers of 2 (i.e. 1, 2, 

4, 8, …) are added in each iteration. Under these conditions, this sequence represents a worst-case 

scenario in which the sequence progresses at its slowest rate. Even so, it can be shown that this sequence 

progresses monotonically, with the odd component decreasing relative to its corresponding power of 2 

at each step. 

1 · 𝑂1∗,    21 · 𝑂2∗,    2
2 · 𝑂3∗,    23 · 𝑂4∗,  … 

 

1 · 𝑁1∗,   21 · (
3·𝑁1∗ + 1

21
),   22 · (

9·𝑁1∗ + 5

22
),   23 · (

27·𝑁1∗ + 19

23
),  … 

Dividing the odd components by their powers of 2, we obtain:  

𝑁1∗

1
,   

3·𝑁1∗+1

22
,    

9·𝑁1∗+5

24
,    

27·𝑁1∗+19

26
,  … 

When N1 > 1, the terms of the series always decrease more rapidly after every new iteration.  

Non-Worst-Case Scenario For any iteration of the process Nt*+1 = 3·Nt* + 2𝑘𝑡∗ applied to the 

hypothetical positive odd integer N1*, if in any step the added power-of-2 factor (2𝑘𝑡∗) does not follow 
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the minimal consecutive sequence, the ratio of the odd component Ot* to the power of 2 will decrease 

even more rapidly than in the worst-case scenario: 

𝑂𝑡∗

2𝑘𝑡∗+𝑗  

where j is a positive integer. 

CONCLUSION  

The relative value of the odd component Ot decreases with each iteration, as shown by the construction 

of the worst-case scenario sequence. Even in this scenario, the sequence progresses monotonically, with 

the odd component’s influence diminishing over time as the relative value of the power of 2 factor 

increases. Also, any variation in the sum of powers of 2 that includes major factors accelerates the 

process of turning Nt to a power of 2. These cases eliminate the possibility of strange cycles or sequence 

divergence, supporting the hypothesis that any positive odd integer N1 approaches a power of 2 through 

repeated iterations under the Collatz process. 
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