pág. 11779
4. Moharir, P. S. (1978). Representation of Integers. IETE Journal of Education, 19(4), 167–171.
https://doi.org/10.1080/09747338.1978.11450293
5. Orús-Lacort, M. & Jouis, C. (2022). Analyzing the Collatz Conjecture Using the Mathematical
Complete Induction Method. Mathematics, 10(22). https://doi.org/10.3390/math10121972
6. Ren, W., Li, S., Xiao, R. & Bi, W. (2018). Collatz Conjecture for 2^100000-1 Is True - Algorithms
for Verifying Extremely Large Numbers. 411-416.
https://doi.org/10.1109/SmartWorld.2018.00099
7. Sayama, H. (2011). An Artificial Life View of the Collatz Problem. Artificial Life, 17(2), 137–
140. https://doi.org/10.1162/artl_c_00024
8. Schwob, M. R., Shiue, P., & Venkat, R. (2021). Novel theorems and algorithms relating to the
Collatz conjecture. International Journal of Mathematics and Mathematical Sciences, 2021(1).
https://doi.org/10.1155/2021/5754439
9. Solow, D. (2023). Half an Induction Proof of the Collatz Conjecture. The College Mathematics
Journal, 54(5), 419–422. https://doi.org/10.1080/07468342.2023.2263029
10. Stefanov, B. (2021). Two-Parameter Generalization of the Collatz Function: Characterization of
Terminal Cycles and Empirical Results. Online Mathematics Journal, 03(01), 19-25.
http://dx.doi.org/10.5281/zenodo.4609709
11. Sternberg, L. (2019). Odd numbers generated from reduced Collatz iterations are produced by a
unique set of reverse iterations. Rapport technique, Department of Biology, University of
Miami.
12. Sultanow, E., Koch, C., & Cox, S. Collatz Sequences in the Light of Graph Theory.
13. Tao, T. (2022, January). Almost all orbits of the Collatz map attain almost bounded values.
In Forum of Mathematics, Pi (Vol. 10, p. e12). Cambridge University Press.
14. Trümper, M. (2014). The Collatz problem in the light of an infinite free semigroup. Chinese
Journal of Mathematics, 2014(1). https://doi.org/10.1155/2014/756917
15. Van Bendegem, J. P. (2005). The Collatz conjecture. A case study in mathematical problem
solving. Logic and Logical Philosophy, 14(1), 7-23.