pág. 9419
Grow, A., Flahault, A., & Devillanova, C. (2022). Are Facebook advertising data reliable proxies for
population indicators? Demography, 59(1), 49–72. https://doi.org/10.4054/MPIDR-WP-2021-
006
Grow, A., Perrotta, D., Del Fava, E., Cimentada, J., Rampazzo, F., Gil-Clavel, S., Zagheni, E., Flores,
R. D., Ventura, I., & Weber, I. (2022). Is Facebook’s advertising data accurate enough for use
in social science research? Insights from a cross-national online survey. Journal of the Royal
Statistical Society Series A: Statistics in Society, 185(2), S343–S363.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining,
inference, and prediction. Springer Science & Business Media.
He, T., Kong, R., Holmes, A. J., Nguyen, M., Sabuncu, M. R., Eickhoff, S. B., Bzdok, D., Feng, J., &
Yeo, B. T. T. (2020). Deep neural networks and kernel regression achieve comparable
accuracies for functional connectivity prediction of behavior and demographics. NeuroImage,
206, 116276.
Henry, S., Schoumaker, B., & Beauchemin, C. (2004). The impact of rainfall on the first out-migration:
A multi-level event-history analysis in Burkina Faso. Population and Environment, 25(5), 423–
460.
Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8),
e1004085. https://doi.org/10.1371/journal.pmed.1004085
Jang, J.-H., Choi, J., Roh, H. W., Son, S. J., Hong, C. H., Kim, E. Y., Kim, T. Y., & Yoon, D. (2020).
Deep learning approach for imputation of missing values in actigraphy data: Algorithm
development study. JMIR mHealth and uHealth, 8(7), e16113.
Jurafsky, D., & Martin, J. H. (2021). Speech and language processing. Pearson Education.
Kalton, G., & Flores-Cervantes, I. (2003). Weighting methods. Journal of Official Statistics, 19(2), 81–
97.
Kaparthi, S., & Bumblauskas, D. (2020). Designing predictive maintenance systems using decision tree-
based machine learning techniques. International Journal of Quality & Reliability
Management, 37(4), 659-686.