pág. 912
2. Yadav, G., Srinivasan, G., & Jain, A. (2024). Cervical cancer: Novel treatment strategies offer
renewed optimism. Pathology - Research and Practice, 254, 155136.
https://doi.org/10.1016/j.prp.2024.155136
3. Sauter, E. R. (2020). Cancer prevention and treatment using combination therapy with natural
compounds. Expert Review of Clinical Pharmacology, 13(3), 265–285.
https://doi.org/10.1080/17512433.2020.1738218
4. De Greef, D., Barton, E. M., Sandberg, E. N., Croley, C. R., Pumarol, J., Wong, T. L., Das, N.,
& Bishayee, A. (2021). Anticancer potential of garlic and its bioactive constituents: A
systematic and comprehensive review. Seminars in Cancer Biology, 73, 219–264.
https://doi.org/10.1016/j.semcancer.2020.11.020
5. Rana, S. V., Pal, R., Vaiphei, K., Sharma, S. K., & Ola, R. P. (2011). Garlic in health and
disease. Nutrition Research Reviews, 24(1), 60–71.
https://doi.org/10.1017/S0954422410000338
6. Kodera, Y., Kurita, M., Nakamoto, M., & Matsutomo, T. (2020). Chemistry of aged garlic:
Diversity of constituents in aged garlic extract and their production mechanisms via the
combination of chemical and enzymatic reactions. Experimental and Therapeutic Medicine,
19(2), 1574–1584. https://doi.org/10.3892/etm.2019.8393
7. Agbana, Y. L., Ni, Y., Zhou, M., Zhang, Q., Kassegne, K., Karou, S. D., Kuang, Y., & Zhu, Y.
(2020). Garlic-derived bioactive compound S-allylcysteine inhibits cancer progression through
diverse molecular mechanisms. Nutrition Research, 73, 1–14.
https://doi.org/10.1016/j.nutres.2019.11.002
8. Colín-González, A. L., Sánchez-González, M., Pérez-Vázquez, V., et al. (2012). The
antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced
protection. Oxidative Medicine and Cellular Longevity, 2012, 1–16.
https://doi.org/10.1155/2012/907162
9. Zhao, X., Sun, W., Ren, Y., & Lu, Z. (2021). Therapeutic potential of p53 reactivation in
cervical cancer. Critical Reviews in Oncology/Hematology, 157, 103182.
https://doi.org/10.1016/j.critrevonc.2020.103182