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El proceso de Tostacion — Lixiviacion - Electrobtencion o RLE (por sus siglas en inglés) es el mas
utilizado para la obtencion de zinc a partir de sus sulfuros. La tostacion, como primera etapa extractiva,
juega un papel importante en la calidad del producto (calcina) que se obtiene, y que depende de la
materia prima (concentrado de sulfuros de zinc, ZnS). En este articulo se abordan las reacciones
quimicas del proceso de tostacion y se analizan la termodindmica de este y el efecto de las diferentes
especies minerales en la calidad de la calcina. A través del seguimiento de la tostacion de diferentes
concentrados, los resultados muestran la interdependencia entre los contenidos de dichas especies con
las especies resultantes, resaltando el impacto de los minerales de hierro, el cual, dependiendo de la

especie, afecta considerablemente el producto y, en consecuencia, la siguiente etapa de extraccion.
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Transformation of ZnS During the Roasting Process. A Thermodynamic
Analysis

ABSTRACT

The roasting-leaching-electrowinning (RLE) process is the most used method for obtaining zinc from
its sulfides. Roasting, as the first stage of extraction, plays an important role in the quality of the product
(calcine) obtained, which depends on the raw material (zinc sulfide concentrate, ZnS). This article
discusses the chemical reactions involved in the roasting process and analyzes its thermodynamics and
the effect of different mineral species on the quality of the calcine. By monitoring the roasting of
different concentrates, the results indicate that there is interdependence between the contents of these
species and the resulting species, highlighting the impact of iron minerals, which, depending on the

species, significantly affect the product and, consequently, the next stage of extraction.
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INTRODUCCION

El zinc es un metal que se presenta en la naturaleza en minerales como calamina, smithsonita y
esfalerita, de los cuales este ultimo es el mas comun; alrededor del 90% del zinc primario producido a
nivel mundial proviene de concentrados de este mineral. El 80% del zinc producido a nivel global es
obtenido a través de un proceso electrolitico y el resto por procesos pirometalargicos (Hellgren et al.,
2024; Cifuentes et al., 2014; Kania y Saternus, 2002). Debido al alto contenido de azufre en los
concentrados de zinc no es posible realizar una extraccion directa, por lo tanto, es necesario oxidar el
sulfuro contenido en el mineral para obtener compuestos que sean facilmente lixiviables en medio
acuoso; este proceso es comunmente conocido como el proceso de tostacion (Leiva et al., 2022; Wang
et al., 2022; Qin et al., 2020).

El proceso de tostacion consiste en una reaccion quimica a atmodsfera controlada y temperaturas por
debajo del punto de fusion del material a procesar y sus productos reaccionados, por lo que este tipo de
operacion es factible para realizar reacciones de oxidacion, reduccion, sulfatacion y clorinacion. Para
el caso de los concentrados de zinc, la reaccion que se lleva a cabo es una oxidacion la cual implica
distintas etapas, como secado, calcinacién, descomposicion térmica y sulfatacion a una temperatura
promedio de 950°C (Bai et al. 2024; Tang et al., 2021).

En los proximos afios la calidad de los concentrados de zinc disponibles serd menor debido al
incremento en el contenido impurezas, asi como la variacion en la composicion mineraldgica y a la
disminucién del tamafio de particula. El incremento en el contenido de otros elementos menores y
compuestos en la materia prima como el plomo (0.5 — 1.5 %), cobre (0.3 — 1.0%) y silice (3.0 — 4.5%)
tienen un impacto significativo debido a que forman especies mineraldgicas con bajos puntos de fusion,
los cuales pueden provocar el colapso del lecho fluidizado, por lo que serd necesario determinar el
comportamiento de éstas para minimizar su efecto durante el procesamiento de este tipo de materia
prima (Zhu et al. 2023; Ke et al., 208).

En este sentido, conocer los fundamentos del proceso de tostacion permite determinar el efecto de las
condiciones de operacidn y caracteristicas fisicoquimicas a las cuales es posible procesar concentrados

con altos contenidos de plomo, cobre y silice manteniendo la continuidad operativa a escala industrial.
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Con ello, se puede evitar la formacion de compuestos con bajo punto de fusion y por ende impedir la
sinterizacion del lecho fluidizado en el proceso de tostacion mediante el ajuste de la composicion
quimica y mineraldgica de las mixturas de concentrado de zinc a tratar (Ke et al., 2018).

Las especies mineraldgicas predominantes en los concentrados de zinc, son la esfalerita (ZnS), pirrotita
(FeS) y pirita (FeS,). Dependiendo del contenido de estos compuestos, el proceso de tostacion puede
presentar variaciones significativas. En la Tabla 1 se presenta un ejemplo de la distribucion
mineralogica de un concentrado de zinc tipico, ademas de las cantidades de SOx(g) generado y el
oxigeno requerido para las reacciones que se llevan a cabo en la etapa de tostacion (Pankka et al., 2023;
Zhang et al., 2022).

Tabla 1. Tratamiento de una tonelada de concentrado de zinc

Concentrado Tostacion

Compuesto  Contenido Compuesto  Contenido SO Oxigeno
(kg) (kg) producido requerido (kg)

ZnS 13.8 ZnS 13.8
ZnS 714.2 ZnO 596.9 469 352
ZnS 32 ZnSOq 53 21
PbS 23 PbSO4 293 6.3
FeS 74 Fe O3 67.3 53.9 47.2
FeS, 70.5 Fe;O; 46.9 75.3 51.8
CuS 7.5 CuO 6.3 5 1.9
Otros 65 Otros 65
Total 1000 878.5 603.2 480.2

El cobre esta presente en los concentrados de zinc como covelita (CuS), calcocita (Cu»S) y calcopirita
(CuFeS,). El cobre forma compuestos con el hierro con bajos puntos de fusion, lo cual implica que
incremente la aglomeracion del material debido a la formacion de compuestos que forman fases liquidas
a un rango de 800 — 900 °C. En el caso de la silice (o cuarzo), por lo general se encuentra libre en los
concentrados y reacciona principalmente con los 6xidos de zinc y plomo formando silicatos, los cuales
tienen un mayor efecto que los compuestos generados con cobre en el grado de aglomeracion del

material en suspension en el lecho fluidizado (Shishin et al., 2023; Degterov et al., 2000).
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De acuerdo con lo anterior, se puede resumir que, en el proceso de tostacion, la presencia de elementos
menores como el plomo, cobre y silice tienen un impacto significativo; en los proximos afios la calidad
de los concentrados de zinc disponibles sera menor debido al incremento en el contenido impurezas,
por lo que sera necesario determinar el comportamiento de éstas para minimizar su efecto durante el
procesamiento de este tipo de materia prima.

Termodinamica de la tostacion

En esta seccion se expone un andlisis termodindmico basado en diagramas de predominancia, usando
el software HSC 6.1 (Roine, 2022), para los principales elementos que contribuyen a la aglomeracion
del lecho fluidizado.

Zinc. El zinc es el elemento predominante en forma de esfalerita, cuya reaccion de oxidacion es muy
exotérmicas y pueden mantener altas temperaturas de combustion como es el caso de los tostadores a
escala industrial. El equilibrio de las reacciones es controlado por las presiones parciales del oxigeno y
del dioxido de azufre, en la Figura 1 se presenta el diagrama de predominancia de para el sistema Zn-
S-O en funcion de la presion parcial de SO; y la temperatura. En este diagrama se sefiala la seccion,
como un circulo blanco, a la presion y temperatura que representan las condiciones de operacion de
proceso, se observa cuales compuestos son factibles de formarse en funcion de la temperatura, por lo
que se puede concluir que temperaturas menores a 820°C aproximadamente favorecen a la formacion
de sulfato de zinc.

Figura 1. Diagrama de predominancia del sistema Zn-S-O
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Hierro. Es el segundo elemento con mayor contenido en los concentrados de zinc, este elemento
presenta dos estados de oxidacion (Fe** y Fe®"), existiendo una amplia variedad de compuestos
asociados a este metal. La wurzita, especie mineral de esfalerita con contenido de hierro (Fe, Zn)S es
uno de los compuestos mas abundantes en los concentrados de zinc. Se ha demostrado
experimentalmente que la difusion de gas en una oxidacion controlada se puede presentar un compuesto
de Fe, S y O en estado liquido a 920°C, es por esto por lo que se ha asociado el contenido de hierro en
el concentrado al grado de aglomeracion de la calcina obtenida (Zhu et al., 2023). La mayoria del hierro
contenido en los concentrados se oxida formando Fe,Os el cual reacciona con el 6xido de zinc para
formar ferritas, esta reaccion se ve favorecida por altas temperaturas en el proceso de tostacion, asi
como de altos tiempos de residencia. Generalmente alrededor del 90% del hierro contenido se convertira
en ferrita de zinc a temperaturas superiores a 900°C, tal como se muestra en la zona de interés de la
Figura 2.

Figura 1. Diagrama de predominancia del sistema Fe-Zn-O
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Plomo. El sistema Pb-S-O es un sistema complejo donde existen diferentes especies mineralogicas; el
sulfato de plomo puede formar muchos compuestos intermedios con 6xido de plomo y sulfatos basicos.
Las condiciones de proceso a escala industrial se sefialan en el diagrama de la Figura 3, mostrando que

el compuesto que se forma bajo estas condiciones es el sulfato de plomo.
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Al comparar los diagramas de predominancia de zinc y plomo, se observa que las areas de estabilidad
del sulfato de plomo son menores. Ademas, para este sistema no pueden coexistir en el gas el sulfato y
oxido de plomo en equilibrio (Ke et al., 2018).

Figura 32. Diagrama de predominancia del sistema Pb-S-O
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Adicionalmente se observa que se forman distintos tipos de oOxidos-sulfatos, dependiendo
principalmente de la presion parcial de oxigeno; el 6xido de plomo solo se presenta a temperaturas
mayores de 920°C y bajas presion de O,. Y es un compuesto de gran relevancia en el grado de
aglomeracion de lecho fluidizado, ya que produce varios compuestos con bajo punto de fusion. Arriba
de 975°C los sulfatos de plomo son reemplazados por una fase liquida constituida por 6xido de plomo
y sulfatos (Zhang et al. 2022).

Cobre. El sistema Cu-S-O al igual que el hierro y el plomo, es un sistema complejo. En el diagrama de
predominancia de la Figura 4 se observa que para las condiciones tipicas de operacion del proceso de
tostacion, los compuestos que se pueden formar son CuO o Cu,O. Al igual que para los otros elementos,
la formacion de sulfatos se ve favorecida por bajas temperaturas y altas presiones parciales de SO,. La
principal razon por la cual este sistema es tan complejo se debe principalmente a los otros elementos a
los cuales esta asociado el cobre en los concentrados de zinc, un ejemplo de este compuesto es la

calcopirita.
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El mecanismo por el cual se forma la fase liquida y los principales compuestos que la constituyen no
estan claramente identificados; sin embargo, el sulfato de cobre se ha identificado en aglomerados de
calcina (Wang et al., 2022). Existe la posibilidad de la presencia de un ternario eutéctico entre el CusS,
Cu,0 y CuSOs alrededor de los 400°C (Klyushnikov et al., 2023; Kim et al., 2010).

Figura 3. Diagrama de predominancia del sistema Cu-S-O [10]
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METODOLOGIA

Con el objetivo de identificar, corroborar y determinar las reacciones principales que se presentan en la
tostacion, y el efecto de los elementos arriba sefialados, presentes en los concentrados en diversas
especies mineralogicas, se disefid una serie de pruebas a escala laboratorio a diferentes temperaturas
(300, 500, 700, 800, 900, 950 y 1000°C). Estas pruebas se realizaron en una mufla marca Carbolite,
modelo CWF-1300. El intervalo de temperaturas estudiado se determin6 con base a un estudio previo
de analisis termogravimétrico, y al analisis termodinamico. Se evaluaron distintas muestras (8
concentrados diferentes, identificados como C1 a C8), las cuales fueron analizadas en cada etapa o
temperatura de tratamiento dado, para identificar las especies mineralogias y determinar su
cuantificacion; para ello se emple6 el analisis modal, usando un MLA (Mineral Liberation Analyzer)

adaptado a un MEB (Microscopio Electrénico de Barrido).
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RESULTADOS Y DISCUSION

Como se ha mencionado, la calidad de los concentrados de zinc depende del contenido impurezas, su
composicion mineralogica y el tamafio de particula, teniendo un fuerte impacto durante el proceso de
tostacion, siendo necesario determinar y predecir el efecto de dichos pardmetros durante su
procesamiento térmico. En este sentido, conocer los fundamentos del proceso de tostacion permite
determinar el efecto de las condiciones de operacion y caracteristicas fisicoquimicas a las cuales es
posible procesar concentrados con altos contenidos de plomo, cobre y silice manteniendo la continuidad
operativa a escala industrial. Con ello, se puede evitar la formacion de compuestos con bajo punto de
fusion y por ende impedir la sinterizacion del lecho fluidizado en el proceso de tostacion mediante el
ajuste de la composicidon quimica y mineralogica de las mixturas de concentrado de zinc a tratar.

En la Tabla 2 se presentan las materias primas (diferentes concentrados de zinc) y su composicion
mineralogica. Cada una de ellas se sometio al proceso de tostacion, con la finalidad de dar seguimiento
a la transformacion de la especie de interés, la esfalerita, o sulfuro de zinc.

Tabla 2. Distribucion de las especies mineralogicas en los diferentes concentrados.

Especie Formula C1 C2 C3 C4 Cs Coé Cc7 C8
Esfalerita (Fe,Zn)S 884 934 82.2 82.1 85.8 93.8 86.7 96.3
Zincita Zn0O 0.06 0.03 0.02 0 0.09  0.01 0.03 0
Franklinita FexZnOy 0.01 0.25 0.03 0 1.33 0 0 0
Willemita Zn3S104 0.01 0.01 0 0 0 0.02 0.01 0
Galena PbS 1.13 1.4 1.67 096 0.69 0.25 0.3 0.51
Pirita FeS; 1.89 1.91 1.38  2.67 9.06 1.57 0.45 0.15
Pirrotita FeaxS 0.13 036 422  0.09 027 03 3.82 0.04
Calcopirita CuFeS; 0.13 0.09 3.5 216 017 0.8 0.62 1.92
Cuarzo Si0, 3.71 0.71 1.06 7.66  0.12  0.02 0.23 0.01

A continuacion, se presentan los resultados de las tostaciones realizadas a cada uno de los concentrados.
En la Figura 5 se presenta la grafica de las especies mineraldgicas asociadas al zinc contenidas en el
solido en el rango de temperaturas estudiado para los concentrados C1 al C4. Primero, se observa que,
en todas las figuras, el ZnS se descompone en funcion de la presencia de los demas componentes. En

la Figura 5 C1 y 5 C4, el contenido de (Zn,Fe)S es practicamente constante hasta los 600 y 500 °C,
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respectivamente; sin embargo, para Figura 5 C2 y Figura 5 C3, el (ZnFe)S va disminuyendo
progresivamente desde los 300 °C; esto puede asociarse al contenido de pirrotita (véase Tabla 2), el
cual es mayor en estos dos ultimos concentrados (C2 y C3).

Figura 5. Comportamiento de la concentracion de las especies mineralogias de los concentrados C1 al
C4, con respecto a la temperatura de tostacion.
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También es importante observar que, al disminuir el sulfuro, aumenta el 6xido, ZnO, y que este puede
mantenerse o disminuir, dependiendo si reacciona con el Fe (del Fe2O3 o del hierro proveniente de la
descomposicion de la pirrotita; al haber mayor presencia de hierro, el ZnO reacciona con el para
producir la ferrita de zinc. Es interesante notar que, para el caso C4, que tiene mayor contenido de
cuarzo, se forma el silicato de zinc, pero este se descompone para nuevamente obtener el 6xido de zinc.
En la Figura 6 se presentan las graficas correspondientes a los concentrados C5 al C8. De manera
general, se confirman las observaciones mencionadas en la figura 6, donde la mayor cantidad de oxido,
ZnQO, contenido en el material calcinado presenta el maximo valor en un rango de 700 a 800°C, y que a

partir de los 900°C disminuye en diferentes proporciones.
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A partir de los 900°C, la cantidad de zinc asociado al hierro como ferritas de zinc se incrementa de
acuerdo con el contenido de hierro en el concentrado, por lo que, para concentrados con altos contenidos
de hierro, principalmente en forma de pirrotita, mas que en forma de pirita o calcopirita, producen
ferritas de zinc, alcanzando contenidos de hasta un 20%. Por otra parte, para concentrados con bajo
contenido de hierro, el contenido de ferrita en el producto final es menor al 10%.

De manera similar a las ferritas de zinc, la formacion de silicatos se incrementa a altas temperaturas,
dependiendo la cantidad contenida en el concentrado inicial, por lo que, para concentrados con bajos
contenidos de cuarzo, no se presenta la curva correspondiente al silicato de zinc, o no se forma una
cantidad significativa de este compuesto.

Figura 4. Comportamiento de la concentracion de las especies mineralogias de los concentrados C5 al
C8, con respecto a la temperatura de tostacion.
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De acuerdo con los resultados obtenidos en la etapa de experimentacion a nivel laboratorio, a
continuacion, se presentan las reacciones principales de los elementos con mayor contenido en la
materia prima, en el rango de temperatura estudiado.

A partir de 300 a 500°C:
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ZnS+1.50,,, = 7Zn0O +SO (1

2() 2(g)

27ZnS +3.50,, —Zn0O-ZnSO, +SO 2)

2(g) 2(g)

ZnS+20,  — ZnSO, 3)

2(g)

Mientras que a partir de las los 500 a 800°C se empiezan a formar 6xidos de otros metales:

FeS+1.50,, - Fe0+S0,,, 3)
2Fe8+3.50,, —Fe,0,+50,, @)
FeS, +2.50,, -»Fe0+280,,, )
FeS, +5.50,, —Fe,0 ;+480,, (6)
CuS+1.50,, — Cu0 +S0,, (M)
Cu,S+20,, —2Cu0+80,, ®)
4CuFeS, +130,, —4Cu0+2Fe,0, +850,, 9)
PbS+1.50,, —PbO+S0,, (10)
PbO+SiO, — PbSIO, (11)

A partir de los 800°C, estos 0xidos reaccionan entre si, generando compuestos como silicatos y ferritas

de zinc:
ZZnOﬂLSiO2 —>ZHZSiO4 (12)
ZnO + Fe203 d ZnFe204 (13)
CONCLUSIONES

De acuerdo con el analisis de los fundamentos termodinamicos del efecto del hierro, plomo, cobre y
silice durante el proceso de tostacion de concentrados de zinc en lecho fluidizado, se concluye lo

siguiente:
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El plomo se encuentra presente en los concentrados de zinc como galena (PbS). A porcentajes de sulfuro

de plomo menores al 2%, la especie predominante al equilibrio, bajo las condiciones de tostacion, sera

el sulfato de plomo; pero si el porcentaje de galena es mayor al 2%, se forma 6xido de plomo.

El cobre esta presente en los concentrados de zinc como covelita (CuS), calcocita (Cu,S) y calcopirita

(CuFeS,); este elemento forma compuestos con el hierro con bajos puntos de fusion. Para porcentajes

mayores al 3% de cobre, este no se oxida debido a un incremento de la cantidad de oxigeno requerido

para la oxidacion de las especies mineraldgicas presentes en el concentrado, por lo que seria necesario

incrementar la cantidad de oxigeno alimentado al tostador para poder realizar esta operacion.

La silice se encuentra libre en los concentrados y reacciona principalmente con los 6xidos de zinc y

plomo formando silicatos. La cantidad de silicatos de zinc presentes al equilibrio se ven afectadas por

la formacion de 6xido de plomo debido a la formacion de una fase liquida (escoria) con alto contenido

de silice.

El contenido de 6xido de zinc generado durante la tostacion es el que se ve mas afectado por la presencia

de pirrotita y silice en la materia prima, ya que, al haber mayor presencia de estas especies, coadyuvan

a la formacion de ferritas de zinc y silicatos de zinc, respectivamente.

Este hecho tiene repercusiones importantes en el procesamiento posterior de la calcina, donde este

compuesto es tratado por lixiviacion acida para disolver el zinc; la especie mas soluble en dicho medio

es el ZnO, mientras que las ferritas y los silicatos de zinc necesitan condiciones mas severas para su

disolucioén, en cuanto a acidez, temperatura y tiempo, elevando el costo del proceso.
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