

Hemocromatose hereditária e deficiência de G6PD

Natália Barth¹

Fabiano de Abreu Agrela Rodrigues²

deabreu.fabiano@gmail.com

RESUMO

Aumento de minerais, metabólitos ou medicamentos pode causar danos as vezes irreversíveis no corpo. No caso da hemocromatose hereditária há o aumento da absorção do ferro, mineral que se acumula em diversos órgãos do corpo. Já a deficiência de G6PD é um distúrbio do metabolismo eritrocitário que ocasiona em diminuição da vida útil destas células, ocasionando importantes crises de hemólise. A seguir são abordados fatores importantes destas duas patologias.

Palavras chave: hemocrotose, deficiencia de G6PD.

¹ Biomédica Auditora Interna NBR ISO 9001:2015 e NBR ISO/IEC 17025:2017

Docente e tutora de cursos de graduação e pós-graduação EAD e presencial. Doze anos de experiência como plantonista em todos os setores do laboratório de análises clínicas. Responsável técnica do setor de Microbiologia e Controle de Qualidade. Implantação de novas metodologias, validação, criação de POPs e treinamento de equipes. Garantia da qualidade na indústria alimentícia e farmacêutica. mestre em ciências médicas e pós-graduada em biologia molecular, docência e acreditação hospitalar.

² Prof. Dr. Fabiano de Abreu Agrela Rodrigues é PhD, neurocientista, mestre em psicologia, biólogo, historiador, antropólogo, com formações também em neuropsicologia, neurolinguística, inteligência artificial, neurociência aplicada à aprendizagem, filosofia, jornalismo, programação em python e formação profissional em nutrição clínica - Diretor do Centro de Pesquisas e Análises Heráclito; Chefe do Departamento de Ciências e Tecnologia da Logos University International, Professor e investigador na Universidad Santander de México; Membro da SFN - Society for Neuroscience, Membro ativo Redilat. Estudo com apoio do Centro de Pesquisas e Análises Heráclito, Logos University International e Universidad Santander.

Hereditary hemochromatosis and G6PD deficiency

ABSTRACT

Increases in minerals, metabolites, or medications can cause sometimes irreversible

damage to the body. In the case of hereditary hemochromatosis, there is an increase in

the absorption of iron, a mineral that accumulates in several organs of the body. G6PD

deficiency, on the other hand, is a disorder of erythrocyte metabolism that causes a

decrease in the life span of these cells, leading to important hemolysis crises. Important

factors of these two pathologies are discussed below.

Key words: hemochrotosis; G6PD; deficiency.

Artículo recibido: 03 marzo 2022

Correspondencia: deabreu.fabiano@gmail.com

Aceptado para publicación: 20 marzo 2022

Conflictos de Interés: Ninguna que declarar

INTRODUÇÃO

A hemocromatose hereditária é uma desordem que faz com que o corpo absorva demasiado ferro da dieta. O excesso de ferro é armazenado nos tecidos e órgãos do corpo, particularmente na pele, coração, fígado, pâncreas, e articulações. Como os seres humanos não podem aumentar a excreção de ferro, o excesso de ferro pode sobrecarregar e eventualmente danificar tecidos e órgãos. Por esta razão, a hemocromatose hereditária é também chamada uma desordem de sobrecarga de ferro.

Os sintomas iniciais de hemocromatose hereditária podem incluir cansaço extremo (fadiga), dores articulares, dores abdominais, perda de peso, e perda de desejo sexual. medida que a condição se agrava, os indivíduos afectados podem desenvolver artrite, doença hepática (cirrose) ou cancro do fígado, diabetes, anomalias cardíacas, ou descoloração da pele. O aparecimento e a gravidade dos sintomas podem ser afectados por factores ambientais e de estilo de vida, tais como a quantidade de ferro na dieta, o consumo de álcool e infecções.

Hemocromatose hereditária (HH)

Hemocromatose hereditária é um distúrbio da absorção do ferro, muito comum em caucasianos. Caracteriza-se pelo aumento da absorção e armazenamento do ferro, resultando em danos em diversos órgãos do corpo. O primeiro gene dito como candidato de mutação responsável pela HH foi o HFE, no entanto atualmente sabe-se que a hemocromatose clássica (tipo 1) é associada a mutação neste gene, mas existem outros 4 principais tipos da doença não ligadas a este gene: tipo 2A, 2B, 3 e 4 (SOCIEDADE BRASILEIRA DE HEPATOLOGIA, 2021).

Diagnóstico

O diagnóstico compreende avaliação laboratorial, histopatológica e molecular quando possível. Dosagens consecutivas de Saturação da Transferrina, com valores acima de 45% para ambos os gêneros, e da Ferritina Sérica acima de 200 ng/ml nas mulheres e 300 ng/ml nos homens, são grandes indicativos para uma investigação mais aprofundada. A saturação da transferrina persistentemente elevada é o parâmetro laboratorial mais importante e precoce para o diagnóstico da HH, enquanto que a ferritina sérica constantemente elevada, está associada à presença de sintomas e sinais clínicos relacionados à sobrecarga de ferro (SOCIEDADE BRASILEIRA DE HEPATOLOGIA, 2021).

Até os anos 1990, o diagnóstico de HH baseava-se principalmente na confirmação histológica de sobrecarga de ferro. Deste modo, preconizava-se a realização de biópsia hepática como parte integrante da investigação do paciente com suspeita de hemocromatose ou de flebotomia quantitativa, nos casos em que a biópsia hepática era contraindicada (IGLESIAS, DUARTE, MIRANDA, et al, 2018).

A biópsia hepática é considerada o melhor método para o diagnóstico de sobrecarga de ferro, pois possibilita além da demonstração histoquímica e/ou dosagem do aumento de ferro no tecido hepático, a avaliação do grau de lesão hepática, quando presente. A biópsia hepática é o único método confiável para estabelecer ou excluir a presença de cirrose hepática que está diretamente relacionada ao prognóstico e ao risco de desenvolvimento de carcinoma hepatocelular (IGLESIAS, DUARTE, MIRANDA, et al, 2018).

Principais mutações relacionadas à HH

- HH tipo 1 mutações relacionadas ao gene HFE: C282Y, H63D, S65C, V53M, V59M, H63H, Q127H, Q283P, P168X, E168Q, E168X e W169X (FEDER et al., 1996).
- HH tipo 2A mutações relacionadas ao gene HJV ou HFE2: G320V, R326X, I222N, I281T, C80R, L101P e a deleção de 4pb do nucleotídeo 980 (PAPANIKOLAOU et al., 2004).
- HH tipo 2B mutações relacionadas ao gene HAMP: 93delG, HAMP R56X e HAMP
 G71D (SANTOS et al., 2009)
- **HH tipo 3** mutações relacionadas ao gene TFR2: Y250X, E60X, M172K, R455Q e Q690P (HOFMANN et al., 2002).
- **HH tipo 4** − mutações relacionadas ao gene SLC40A1: N144H, A77D, V162X, D157G, Q182H, G323V, D181V, G80V e G267D (CEMONESI et al., 2005).

Prevalência da HH na população brasileira

A prevalência da HH no Brasil é desconhecida, entretanto em trabalhos realizados em regiões do sudeste do País a prevalência de heterozigotos para C282Y foi de 1,2-2,8% e para H63D de 31,1-32,6% (IGLESIAS, DUARTE, MIRANDA, et al, 2018).

Eritroenzimopatias

As eritroenzimopatias são distúrbios do metabolismo eritrocitário que causam encurtamento da vida dessas células comprometendo sua forma e função. São conhecidas

por provocar hemólise pela alteração do metabolismo energético no interior das hemácias (RICHARDSON, O'MALLEY, 2021).

Tratamento

O tratamento da hemocromatose pode incluir a redução dos níveis de ferro através da remoção do sangue (flebotomia), terapia de quelação do ferro, alterações dietéticas, e tratamento de complicações da doença. O objectivo do tratamento é reduzir a quantidade de ferro no corpo para níveis normais, prevenir ou retardar a danificação dos órgãos por excesso de ferro, e manter quantidades normais de ferro durante toda a vida útil.

A flebotomia ajuda a remover o excesso de ferro do corpo. A maioria das pessoas começa o tratamento com flebotomia terapêutica semanal, embora por vezes o tratamento seja inicialmente duas vezes por semana se os níveis de ferro forem muito elevados. A flebotomia de manutenção envolve normalmente tratamento a cada 2-4 meses [6] A terapia de quelação do ferro pode ser recomendada para algumas pessoas com hemocromatose, se tiverem outros problemas de saúde. Isto envolve a remoção do excesso de ferro usando medicamentos .

As recomendações dietéticas para pessoas com hemocromatose podem incluir evitar álcool e carne vermelha. As pessoas com hemocromatose não são recomendadas a tomar suplementos de ferro ou vitamina C.

Importância da G6PD no processo glicolítico

Ela impede o estresse oxidativo dentro da célula à medida que faz a manutenção dos níveis de glutationa reduzida. A G6PD age sobre o substrato glicose-6-fosfato, gerando NADPH que age como cofator da glutationa-redutase na geração de glutationa reduzida. A glutationa reduzida detoxifica o peróxido de hidrogênio, mantendo a célula protegida. Na deficiência desta enzima a hemoglobina pode se tornar oxidada, se desnaturar e formar corpúsculos de Heinz lesando a membrana eritrocitária (SILVA et al., 2006).

Principais mutações responsáveis pela deficiência de G6PD

Há mais de 400 mutações descritas. A mutação G202A é a mais frequente entre os indivíduos que apresentam deficiência da G6PD. Também são bastante investigadas as mutações **A376G e C563T**, Variante Mediterrâneo (C188T), Variante A (A68G e também G202A) (RICHARDSON, O'MALLEY, 2021).

Diagnóstico molecular da deficiência de G6PD

A dosagem da enzima no sangue de uma pessoa portadora poderá apresentar-se normal durante uma crise hemolítica aguda desencadeada por drogas oxidantes ou estresse, uma vez que a hemólise estimula o aumento da produção de hemácias e as hemácias novas possuem atividade enzimática maior do que as mais velhas, o que pode gerar um resultado falso-negativo para a Deficiência de G6PD (VICK, 2021).

Normalmente o quadro clínico ligado à hemólise aparece de 1 a 3 dias após o contato com os fatores desencadeantes, com icterícia, hemoglobinúria, palidez, entre outros sintomas, com intensidade e gravidade variáveis, em relação direta com a variação enzimática apresentada (VICK, 2021).

O teste genético é indicado para confirmar a suspeita de deficiência de G6PD levantada pela Triagem Neonatal (realizado no teste do Pezinho), assim como, para avaliar a possibilidade de mulheres heterozigotas transmitirem a mutação para filhos do sexo masculino e identificar casos de mutação já identificada na família (VICK, 2020).

Mutação G202A => variante A- ou G6PD*A-

A variante G6PD A- é resultado da mutação ($G \rightarrow A$) na posição 202 do gene G6PD é a mais frequente entre os indivíduos que apresentam deficiência de G6PD. Assim, a ausência da mutação estudada não exclui a presença de outras mutações na mesma região. Em pacientes com a variante A-, a meia-vida da enzima é reduzida de 60 para cerca de 13 dias, levando a níveis de atividade insuficientes para proteção das hemácias em 50 a 60 dias depois da liberação destas para a circulação periférica. Esta variante é responsável pelas formas mais brandas da G6PD, uma vez que apenas hemácias com mais de 50 a 60 dias são hemolisadas durante crises oxidativas, poupando as mais novas (RICHARDSON, O'MALLEY, 2021).

Mutação A376G => variante A+ ou G6PD*A+

A variante G6PD A+ é resultado da mutação $(A \rightarrow G)$ na posição 376 do gene G6PD. Pacientes que apresentam apenas esta mutação tem a enzima G6PD com atividade funcional normal, sendo esta considerada apenas uma variação da normalidade. Porém, a presença desta mutação, associada à mutação G202A resulta na forma clínica G6PD*A-(JAmWAL, et al, 2020).

Mutação C563T => variante B- ou G6PD*Mediterrâneo

A variante B- ou alelo G6PD*Mediterrâneo é decorrente da mutação ($C \rightarrow T$) na posição 573 do gene G6PD. Este alelo é um dos tipos polimórficos mais graves da deficiência, sendo encontrado em uma ampla área geográfica, abrangendo muitos grupos étnicos. Em pacientes com a variante mediterrânea, a atividade da G6PD é reduzida desde a formação das hemácias, levando a níveis insuficientes para a proteção contra oxidação em 5 a 10 dias. Desta forma, durante as crises hemolíticas, tanto as hemácias mais novas quanto as mais velhas são afetadas, levando a um quadro mais grave (JAmWAL, et al, 2020).

Relação do ferro com a neurodegeneração

O acumular de ferro pode causar danos neuronais a regiões cerebrais sensíveis ao ferro. A neurodegeneração com acúmulo de ferro no cérebro reflete um grupo de distúrbios causados pela sobrecarga de ferro nos gânglios basais. Níveis elevados de ferro e desencadeadores patogênicos relacionados ao ferro também têm sido implicados em doenças neurodegenerativas esporádicas, incluindo a doença de Alzheimer (AD), doença de Parkinson (PD) e atrofia do sistema múltiplo (MSA). A dishomeostase induzida pelo ferro dentro de regiões cerebrais vulneráveis ainda é insuficientemente compreendida. Aqui, resumimos os modos de ação pelos quais o ferro pode atuar como gatilho primário ou secundário de doenças em distúrbios neurodegenerativos. Além disso, as opções de tratamento disponíveis visando a desregulação do ferro no cérebro e o uso do ferro como biomarcador em estágios pródigos são discutidas criticamente para abordar a questão da causa ou consequência.

O ferro tem uma relação muito importante com a patogênese dos mecanismos da neurodegeneração. A sua absorção dá-se no duodeno,preferencialmente a partir do ferro reduzido. A quantidade de ferro absorvida é regulada de acordo com as necessidades do organismo. O aumento do ferro cerebral com a idade ocorre em concentrações diferentes conforme a região do sistema nervoso central (SNC). Uma exemplo claro de neurodegeneração pode basear-se nas principais alterações neuropatológicas, ou seja, quando estão presentes componentes protéicos anormais que se acumulam no cérebro, levando à perda neuronal, dependentes da idade.

CONCLUSÃO

O ferro é um metal fundamental para a homeostase do organismo; porém, quando em excesso, passa a desencadear reações adversas e perigosas.

Como podemos observar ao longo do artigo, o aumento de minerais, metabólitos ou medicamentos pode causar danos as vezes irreversíveis no corpo. A hemocromatose hereditária, desordem tratada em artigo, faz com que o corpo absorva demasiado ferro da dieta. O excesso de ferro é armazenado nos tecidos e órgãos do corpo, particularmente na pele, coração, fígado, pâncreas, e articulações. Como os seres humanos não podem aumentar a excreção de ferro, o excesso de ferro pode sobrecarregar e eventualmente danificar tecidos e órgãos.

No que diz respeito à neurodegeneração, esta pode estar associada numa última instancia a um desequilíbrio entre a formação de radicais livres e as enzimas que defendem o organismo dos seus danos leva à oxidação de elementos celulares que são fundamentais para um funcionamento normal, levando a alterações na conformação de proteínas e aumento de sua agregabilidade, à formação de fibrilas.

REFERÊNCIAS

- IGLESIAS, Cassia P. K.; DUARTE, Paulo Vinicios F.; MIRANDA, Jacqueline S. S. M et al. Hemocromatose: Uma Causa Reversível de Insuficiência Cardíaca. International Journal of Cardiovascular Sciences. Vol 31. 3 ed; 308-311, 2018.
- JAmWAL, M.; et al. Laboratory Approach to Hemolytic Anemia. Indian J Pediatr. 87. 1; 66-74, 2020
- Ndayisaba A, Kaindlstorfer C, Wenning GK. Iron in Neurodegeneration Cause or Consequence? Front Neurosci. 2019 Mar 1;13:180. doi: 10.3389/fnins.2019.00180. PMID: 30881284; PMCID: PMC6405645.
- Richardson, S. R.; O'malley, G. F. In: Statpearls [Internet]. Treasure Island (Fl): Statpearls Publishing. Glucose 6 Phosphate Dehydrogenase Deficiency.. 2021. Disponível em: https://www.ncbi.nlm.nih.gov/books/NBK470315/. Acesso em 13 Out 2021.
- Sociedade Brasileira De Hepatologia. Hemocromatose hereditária: muito além do hfe.

 Disponível em: https://sbhepatologia.org.br/fasciculos/26.pdf>. Acesso em 10

 Fev

- VICK, Dan J. Evaluation of glucose-6-phosphate dehydrogenase (G6PD) status in US military and VA patients with COVID-19 infection. BMJ Mil Health. 167. 2; 144, 2021.
- VICK, D. J. Glucose-6-Phosphate Dehydrogenase Deficiency and COVID-19 Infection. Mayo Clin Proc. 95. 8; 1803-1804, 2020.