Ciencia Latina Revista Cientifica Multidisciplinar, Ciudad de México, México.
ISSN 2707-2207 / ISSN 2707-2215 (en linea), Noviembre-Diciembre 2025,
Volumen 9, Numero 6.

https://doi.org/10.37811/¢cl rcm.v9i6

CHAT DE ASISTENCIA EMBEBIDO EN UN
IDE POTENCIADO POR IA

AI-POWERED EMBEDDED ASSISTANCE
CHAT FOR IDE

Francisco Fabian Tobias Macias
Tecnoldgico Nacional de México/Instituto Tecnologico de Piedras Negras, México

Gustavo Emilio Rojo Velazquez
Tecnoldgico Nacional de México/Instituto Tecnologico de Piedras Negras, México

Carlos Hernandez Santos
Tecnologico Nacional de México/Instituto Tecnoldgico de Nuevo Leon, México

Roxana Garcia Andrade
Tecnologico Nacional de México/Instituto Tecnologico de Nuevo Leon, México

Yasser Alberto Davizon Castillo
Tecnologico Nacional de México/Instituto Tecnolégico de los Mochis, México

Ciencia Latina Revista Cientifica Multidisciplinar
Noviembre - Diciembre, 2025, Volumen 9, Numero 6

h::: Ciencia Latina

Tecnologia

DOI: https://doi.org/10.37811/cl rcm.v9i6.21585

Chat de Asistencia Embebido en un IDE Potenciado por 1A

Francisco Fabiian Tobias Macias' Gustavo Emilio Rojo Velazquez
francisco.tm@piedrasnegras.tecnm.mx gustavo.rv(@piedrasnegras.tecnm.mx
https://orcid.org/0000-0002-2639-5341 https://orcid.org/0000-0002-7792-1436
Tecnologico Nacional de México Tecnologico Nacional de México
Instituto Tecnologico de Piedras Negras Instituto Tecnologico de Piedras Negras
México Meéxico

Carlos Hernandez Santos Roxana Garcia Andrade
carlos.hernandez@itnl.edu.mx roxana.ga(@nuevoleon.tecnm.mx
https://orcid.org/0000-0003-1751-1096 https://orcid.org/0000-0003-2819-6482
Tecnoldgico Nacional de México Tecnoldgico Nacional de México
Instituto Tecnologico de Nuevo Leon Instituto Tecnologico de Nuevo Leon
México México

Jasser Alberto Davizon Castillo
yasser.davizon@hotmail.com
https://orcid.org/0000-0003-3023-947X
Tecnologico Nacional de México
Instituto Tecnologico de los Mochis
México

RESUMEN

El desarrollo de software contemporaneo es una actividad de alta demanda cognitiva, caracterizada
por interrupciones constantes que afectan la productividad del programador. La practica habitual de
recurrir a recursos externos para la resolucion de errores provoca frecuentes cambios de contexto,
generando sobrecarga mental y disminuyendo la eficiencia. Este proyecto de investigacion tiene como
objetivo general analizar, desde un enfoque tedrico, como la implementacion de un chat de asistencia
inteligente embebido en un Entorno de Desarrollo Integrado (IDE) puede contribuir a la reduccion de
errores, la mejora de la productividad y la promocion de buenas practicas en la programacion. La
metodologia empleada se basa en un analisis documental cualitativo, una revision bibliografica de
literatura reciente y una evaluacion conceptual de la arquitectura, funcionamiento e impacto de dicha
herramienta. El analisis concluye que un asistente integrado tiene un alto potencial para mitigar la
carga cognitiva al reducir la conmutacion de contexto y actuar como un sistema experto que asiste en
la depuracion y refactorizacion. Se identifica un impacto positivo significativo tanto en el ambito
profesional, al optimizar el flujo de trabajo, como en el educativo, al funcionar como un tutor
personalizado. Sin embargo, se discuten los riesgos inherentes, principalmente la dependencia
tecnologica, la pérdida de habilidades técnicas y los desafios éticos relacionados con la privacidad y

la responsabilidad del codigo.

! Autor principal
Correspondencia: francisco.tm@piedrasnegras.tecnm.mx

https://doi.org/10.37811/cl_rcm.v9i6.21585
mailto:francisco.tm@piedrasnegras.tecnm.mx
mailto:francisco.tm@piedrasnegras.tecnm.mx
mailto:almayineth@nlaredo.tecnm.mx
mailto:francisco.tm@piedrasnegras.tecnm.mx

Palabras clave: asistente de codigo 1A, ergonomia cognitiva, IDE, productividad del desarrollador;
context switching, buenas practicas de programacion

Al-Powered Embedded Assistance Chat For IDE

ABSTRACT

Contemporary software development is a high-cognitive-demand activity characterized by constant
interruptions that impact programmer productivity. The common practice of relying on external
resources for error resolution necessitates frequent context switching, leading to mental overload and
decreased efficiency. This research aims to theoretically analyze how implementing an intelligent chat
assistant embedded within an Integrated Development Environment (IDE) can contribute to error
reduction, productivity enhancement, and the promotion of programming best practices. The
methodology employs a qualitative documentary analysis, a bibliographic review of recent literature,
and a conceptual evaluation of the tool's architecture, functionality, and impact. The analysis concludes
that an integrated assistant holds significant potential to mitigate cognitive load by minimizing context
switching and acting as an expert system for debugging and refactoring. A significant positive impact
is identified in both the professional realm, by optimizing workflows, and the educational sector, acting
as a personalized tutor. However, inherent risks are discussed, primarily technological dependency,

technical skill degradation, and ethical challenges regarding privacy and code accountability.

Keywords: Al code assistant, cognitive ergonomics, IDE, developer productivity, context switching,

programming best practices

Articulo recibido 15 noviembre 2025
Aceptado para publicacion: 15 diciembre 2025

INTRODUCCION

El desarrollo de software contemporaneo es una actividad compleja que exige atencion constante,
comprension de estructuras logicas y manejo de dependencias. Los programadores enfrentan errores
sintacticos y fallas de compilacion que interrumpen su flujo de trabajo. Actualmente, la practica habitual
de recurrir a recursos externos (foros, documentacién) provoca frecuentes cambios de contexto (context
switching), lo que incrementa el tiempo de bisqueda y disminuye la eficiencia.

Impacto de la Inteligencia Artificial en la productividad

El uso de la IA ha revolucionado el abordaje de tareas complejas. Los modelos de lenguaje basados en
arquitecturas Transformer han demostrado capacidades notables para generar c6digo coherente (Ahmad
et al., 2021). Investigaciones recientes evidencian que las interrupciones constantes merman el
rendimiento (Alhoshan & Wang, 2022). En este sentido, los asistentes embebidos ofrecen una ventaja
sustancial al mantener al usuario dentro del mismo entorno, optimizando la carga cognitiva. Estudios
empiricos, como los de Kalliamvakou et al. (2023), identificaron que estos asistentes pueden
incrementar la velocidad de desarrollo entre un 20% y un 40%.

Desafios y limitaciones de la tecnologia

A pesar de las ventajas, existen desafios significativos. Una preocupacion primordial es la seguridad
del codigo; Perry et al. (2023) demostraron que los desarrolladores que usan IA tienden a escribir codigo
menos seguro y confian mas en soluciones que pueden contener vulnerabilidades. Asimismo, existe el
riesgo de degradacion de habilidades. Prather et al. (2023) advierten sobre la alteracion de procesos
metacognitivos en estudiantes, mientras que Vaithilingam et al. (2022) notaron que frecuentemente se
invierte mas tiempo depurando cddigo generado por IA que escribiéndolo desde cero. Finalmente,
aspectos éticos como la privacidad y las licencias de co6digo siguen siendo barreras criticas (Sandoval
et al., 2022; Bender et al., 2021).

Ante este panorama, el objetivo general de esta investigacion es analizar tedricamente el impacto de la
implementacion de un chat de asistencia inteligente embebido en un IDE sobre la carga cognitiva y la
eficiencia del flujo de trabajo. Se busca fundamentar la relacion entre ergonomia cognitiva y

productividad, describir las capacidades arquitectonicas de los asistentes y evaluar criticamente sus

riesgos €ticos y técnicos.

DESARROLLO

El desarrollo de software es una actividad compleja que exige atencion constante, comprension de

estructuras logicas, manejo de dependencias entre modulos y aplicacion de buenas practicas de

programacion. Los programadores enfrentan errores sintacticos, fallas de compilacion y problemas de

gjecucion que interrumpen su flujo de trabajo y generan sobrecarga cognitiva, afectando su

productividad y concentracion. Actualmente, los desarrolladores suelen recurrir a recursos externos,

como foros en linea o documentacidn, para resolver estos problemas. Esta practica provoca cambios de

contexto frecuentes , incrementa el tiempo de busqueda de soluciones y disminuye la eficiencia en el

proceso de desarrollo. Aunque los IDEs modernos ofrecen funciones de autocompletado y correccion

basica de errores, no brindan explicaciones contextuales ni soluciones adaptadas a proyectos complejos.

La motivacion de esta investigacion es explorar como la integracion de un chat de asistencia inteligente

dentro de un IDE puede mejorar la resolucion de errores, optimizar la productividad y fomentar buenas

practicas de programacion. La relevancia radica en que, a pesar del auge de asistentes como GitHub

Copilot o ChatGPT, existen pocas investigaciones tedricas que analizan su impacto cognitivo y

educativo en el entorno de desarrollo, especialmente en literatura en espafiol. Para abordar este

problema, la investigacion seguira un enfoque teérico , basado en:

= Revision bibliografica de literatura académica y articulos recientes sobre asistentes inteligentes en
programacion.

= Analisis conceptual del funcionamiento de un chat embebido en IDEs.

= Evaluacion tedrica de los beneficios, limitaciones y posibles impactos en productividad y
aprendizaje de los desarrolladores.

En sintesis, el problema central que guia esta investigacion es :

(Como podria un chat de asistencia embebido en un IDE contribuir a mejorar la resolucion de errores,

la productividad y la aplicacion de buenas practicas en el desarrollo de software desde un enfoque

tedrico?

Propt Engurer “ o € O whcramaTourCrwom e aP
» P avrghe b Cher
«: » I argiw
2> Pow
3
v I e plugns

> B

Weduo

tring url) : Bodlean

s 62
» B
s e

Ventajas: Impacto de la inteligencia artificial en la productividad del desarrollo

El uso de la inteligencia artificial en el desarrollo de software ha revolucionado la forma en que los
programadores abordan tareas de alta complejidad, tales como la deteccion de errores, la generacion de
codigo y la refactorizacion. Los modelos de lenguaje basados en arquitecturas Transformer, entrenados
con grandes volumenes de codigo fuente, han demostrado capacidades notables para comprender y
generar fragmentos coherentes y funcionales (Ahmad et al., 2021).

Paralelamente, la productividad del programador se ha consolidado como un tema de interés critico en
la ingenieria de software. Investigaciones recientes evidencian que los cambios de contexto, la busqueda
manual de informacion y las interrupciones constantes merman significativamente el rendimiento y la
concentracion del desarrollador (Alhoshan & Wang, 2022). En este contexto, los asistentes embebidos
en los IDE ofrecen una ventaja sustancial al mantener al usuario dentro del mismo entorno de trabajo,
optimizando asi la carga cognitiva.

Asimismo, la evidencia empirica respalda una correlacion positiva entre el uso de IA y la eficiencia.
Kalliamvakou et al. (2023) identificaron que los asistentes inteligentes pueden incrementar la velocidad
de desarrollo entre un 20 % y un 40 %, variable segtn la complejidad del proyecto y la experticia del
usuario. No obstante, advierten sobre la necesidad imperativa de la supervision humana para mitigar
riesgos derivados de recomendaciones imprecisas.

En conclusion, esta investigacion se fundamenta en la interseccion entre inteligencia artificial,

productividad y ergonomia cognitiva, demostrando que la integracion de un asistente inteligente en un

pag. 4754

IDE no solo optimiza la eficiencia operativa, sino que también potencia el aprendizaje continuo del
programador.

Desventajas: Desafios y Limitaciones

A pesar de las ventajas operativas, la integracion de asistentes basados en Inteligencia Artificial en el
flujo de trabajo presenta desafios significativos. Una de las preocupaciones primordiales es la fiabilidad
y seguridad del codigo generado. Estudios recientes, como el de Perry et al. (2023), demostraron que
los desarrolladores que utilizan asistentes de IA tienden a escribir c6digo menos seguro en comparacion
con aquellos que no los usan, aunque paradojicamente confian mas en la seguridad de sus soluciones.
Dado que los modelos de lenguaje (LLMs) son propensos a "alucinaciones", pueden sugerir librerias
inexistentes o patrones vulnerables, obligando al desarrollador a un escrutinio constante.

Por otro lado, existe una preocupacion académica sobre la dependencia tecnoldgica y el impacto en el
aprendizaje. Prather et al. (2023) advierten sobre el riesgo de alterar los procesos metacognitivos en
estudiantes y desarrolladores noveles; el uso excesivo de la generacion automatica puede atrofiar la
capacidad de resolucion de problemas (problem-solving skills) y la comprension profunda de la logica
del codigo. Si el usuario cae en el "sesgo de automatizacion", aceptando las sugerencias sin critica, se
compromete la calidad del software a largo plazo, tal como observaron Vaithilingam et al. (2022),
quienes notaron que los programadores frecuentemente invierten mas tiempo depurando codigo
generado por IA que escribiéndolo desde cero debido a errores sutiles.

Finalmente, los aspectos éticos y legales representan una barrera critica. La privacidad de los datos es
un punto de friccion, ya que el envio de fragmentos de codigo propietario a la nube plantea riesgos de
fuga de propiedad intelectual. Ademas, existen debates sobre la licencia del codigo sugerido, dado que
estos modelos se entrenan con repositorios publicos, lo que podria derivar en infracciones de derechos
de autor no intencionadas.

Objetivo General

= Analizar tedricamente el impacto de la implementacion de un asistente de chat inteligente embebido

en un Entorno de Desarrollo Integrado (IDE) sobre la carga cognitiva, la eficiencia del flujo de

trabajo y la calidad del codigo en el desarrollo de software contemporaneo.

Objetivos Especificos

1. Fundamentar la relacién entre la ergonomia cognitiva, la conmutaciéon de contexto (context
switching) y la productividad del programador, para comprender las limitaciones del flujo de
trabajo tradicional sin asistencia integrada.

2. Describir las capacidades funcionales y arquitectonicas de los asistentes basados en Inteligencia
Artificial (LLMs) dentro de un IDE, enfocandose en sus roles de depuracion, refactorizacion y
generacion de codigo.

3. Contrastar las ventajas operativas de la asistencia embebida frente al uso de recursos externos
(navegadores, foros), evaluando la reduccion de interrupciones y la optimizacion del tiempo de
desarrollo.

4. Evaluar criticamente los desafios y riesgos inherentes a esta tecnologia, tales como la fiabilidad de
las respuestas (alucinaciones), la dependencia tecnoldgica (degradacion de habilidades) y las
implicaciones éticas de privacidad y seguridad.

Objeto de Estudio

La influencia de los asistentes conversacionales basados en Inteligencia Artificial embebidos en el IDE

sobre la ergonomia cognitiva y el flujo de trabajo del desarrollo de software.

Desglose Metodolégico

Para que tengas claridad total si te preguntan (o para tu propia guia), aqui esta desglosado:

Unidad de Analisis: Los asistentes de codigo inteligentes (basados en LLMs como GPT/Copilot)

integrados en el entorno de desarrollo.

Variable Independiente (Causa): La integracion de la asistencia en el IDE (eliminacion de barreras

externas).

Variable Dependiente (Efecto): La carga cognitiva (cambio de contexto) y la productividad/calidad del

codigo.

Campo de Accion

El analisis teorico de la optimizacion de procesos de depuracion, refactorizacion y escritura de codigo

mediante la reduccion de la conmutacion de contexto (context switching).

METODOLOGIA

El presente proyecto se fundamenta en una metodologia de investigacion cualitativa, con un alcance

descriptivo y analitico. Dado que el objetivo general es analizar, desde un enfoque teérico, como la

implementacion de un chat de asistencia puede contribuir a la mejora del desarrollo de software, la

investigacion se basa en el analisis documental y la sintesis conceptual.

El proceso metodologico se estructurod en las siguientes fases:

Revision Bibliografica.

Se llevo a cabo una revision de la literatura reciente, acotada principalmente al periodo 2020-2025, para

identificar los hallazgos mas actuales sobre asistentes inteligentes, ergonomia cognitiva en

programacion y productividad del desarrollador. Se consultaron bases de datos académicas y

repositorios como [EEE Xplore, ACM Digital Library, Scopus y arXiv, utilizando términos clave como

"Al code assistant", "context switching software development", "ergonomia cognitiva programacion" e

"intelligent IDE".

Analisis Conceptual.

Esta fase consistio en la descomposicion y sintesis de la informacion recopilada. Se definieron los

conceptos fundamentales que sustentan el problema, como "Ergonomia Cognitiva" y "Buenas

Practicas", y se estructurd el "Marco Teoérico" que da contexto a la investigacion. El objetivo de esta

fase fue describir el funcionamiento conceptual del asistente y su arquitectura técnica.

Cuestionario

1. Cuando encuentras un error y debes buscar la solucibn en un navegador externo
(Google/StackOverflow), ;sientes que pierdes la concentracion o el "hilo" de la ldgica? a) Si,
frecuentemente b) A veces c) No, casi nunca

2. ¢Con qué frecuencia recurres a recursos externos durante una sesion de programacion tipica? a)
Mas de 10 veces b) Entre 5y 10 veces c) Menos de 5 veces

3. (Consideras que integrar un asistente de chat DIRECTAMENTE en tu IDE (sin tener que abrir el

navegador) mejoraria tu velocidad y productividad? a) Totalmente de acuerdo b) De acuerdo c)

Indiferente

4. Al usar IA para aprender, ;prefieres que el asistente te explique la causa del error (Modo Tutor) o
solo te dé el codigo corregido? a) Prefiero la explicacion (Modo Tutor) b) Prefiero solo el codigo
(Soluciéon Rapida)

5. (Has detectado "alucinaciones" (codigo inventado, librerias que no existen o respuestas
incorrectas) al usar asistentes de IA? a) Si, varias veces b) Pocas veces ¢) Nunca

6. (Te preocupa volverte dependiente de la IA y perder tu habilidad para resolver problemas

manualmente? a) Si b) No

Figura 1. Frecuencia de interrupcion para buscar documentacion externa

Menos de 5 veces al dia

Entre 5y 10 veces al dia

Mas de 10 veces al dia

Figura 2. Perdida de concentracion al cambiar de ventana

No

Figura 3. Percepcion de mejora con chat embebido

En desacuerdo

De acuerdo

Totalmente de acuerdo

Figura 4. Preocupacion por dependencia tecnologica

Figura 5. Deteccion de alucinaciones (respuestas incorrectas)

Nunca

Si, varias veces

Figura 6. Preferencia de aprendizaje

Solo Cédigo (Répido)

Modo Tutor (Explicacian)

Evaluacion Teorica y Sintesis

Finalmente, se realiz6 una evaluacion tedrica de los beneficios, limitaciones e impactos de la tecnologia.
Basandose en el analisis de los "Antecedentes" Y el "Estado del Arte", esta fase se centrd en analizar el
impacto tedrico en la productividad, asi como los riesgos éticos y los efectos en los &mbitos laboral y
educativo, para responder de manera integral a la pregunta de investigacion.

RESULTADOS

El desarrollo de software es una de las actividades cognitivas mas exigentes. El programador debe
gestionar multiples niveles de abstraccion y sufre el coste de la conmutacion de contexto (context
switching) al cambiar constantemente de foco entre el editor de codigo, la documentacion y los foros
de ayuda . Este cambio interrumpe el flujo de concentracion, aumenta la carga cognitiva y es uno de los
principales factores que reducen la productividad. La ergonomia cognitiva busca adaptar las
herramientas, como el IDE, para reducir este esfuerzo mental.

Para mitigar esto, han evolucionado los asistentes inteligentes (code assistants). Herramientas como
GitHub Copilot, ChatGPT y AWS CodeWhisperer han demostrado la capacidad de generar codigo,
explicar errores y ofrecer sugerencias adaptadas al contexto. Estos se basan en modelos de lenguaje de
gran escala (LLMs) entrenados en repositorios de cédigo abierto.

Sin embargo, el estado del arte actual muestra limitaciones. Muchos asistentes funcionan como

extensiones externas, lo que genera latencia y riesgos de privacidad .

pag. 4760

Barke et al. (2023) destacan que los desarrolladores tienden a aceptar sugerencias de 1A sin validacion
exhaustiva, lo que puede introducir errores sutiles. Por lo tanto, la proxima generacién de IDEs
incorporara sistemas de asistencia nativos y embebidos, capaces de analizar el contexto del proyecto y
las reglas del equipo. El estado del arte muestra una clara evolucion hacia asistentes integrados de
manera nativa como una herramienta fundamental para la productividad y la calidad del software
(Savary-Leblanc et al., 2023; Corso et al., 2024).

Funcionamiento Conceptual y Disefio Técnico

El funcionamiento de un chat embebido se basa en su conexién continua con el proyecto del
desarrollador. Esto le permite analizar en tiempo real el codigo, los errores del compilador y la
estructura del proyecto. Gracias a esta integracion, puede detectar errores de sintaxis, inconsistencias
logicas y ofrecer soluciones adaptadas al codigo especifico, reduciendo la necesidad de buscar en
fuentes externas (Li et al., 2023) .

La interaccion se realiza mediante lenguaje natural, permitiendo al desarrollador preguntar ";por qué
ocurre este error?" . El sistema usa Procesamiento de Lenguaje Natural (PLN) para devolver respuestas
contextuales, ejemplos de codigo y recomendaciones de buenas practicas (Rustagi et al., 2024).
Ademas, el asistente puede actuar de forma proactiva, sugiriendo refactorizaciones, mejoras de
rendimiento o alertas de seguridad al identificar patrones de codigo repetidos (Weisz et al., 2024) .

El disefio técnico preliminar de esta herramienta se compondria de tres capas:

Interfaz de Usuario: Embebida directamente en el IDE (ej. Visual Studio Code), debe ser no intrusiva,
configurable y accesible .

Motor de Analisis: Examina el contexto del cddigo, los mensajes del compilador y la estructura del
proyecto mediante analisis estatico para ofrecer retroalimentacion inmediata (Kim & Kim, 2024) .
Capa de Inteligencia Artificial: Utiliza modelos de PLN y aprendizaje automatico para generar
respuestas contextualizadas, pudiendo conectarse a redes locales o en la nube segin la privacidad
requerida . El sistema se beneficiaria del aprendizaje continuo (Nghiem et al., 2024).

Este disefio podria integrarse con sistemas de control de versiones (como Git) para analizar el historial

de cambios y sugerir soluciones coherentes con la evolucion del proyecto.

Figura 7

Representacion Conceptual del Disefio Técnico del Chat Embebido
20
_ 40
@
a
L
=
g 30
|-
o
¥
5
£ 20r
[=
[=3
B
10+
0 Interfaz de Usuario Motor de Analisis Capa de |A
Capas del Sistema

Discusion sobre el Impacto Laboral y Educativo

La incorporacion de chats de asistencia embebidos representa un cambio profundo en cémo los
programadores aprenden y trabajan.

En el ambito educativo, estas herramientas redefinen la ensefianza. Actiian como tutores virtuales
personalizados que ofrecen retroalimentacion inmediata, explican errores y sugieren correcciones . Esto
convierte al IDE en un espacio de aprendizaje activo, reduce la frustracion asociada al error y fomenta
el aprendizaje autodirigido. Los estudiantes pueden comprender mejor los errores y acceder a ejemplos
practicos sin abandonar el entorno de desarrollo (De los Santos & Ortiz, 2023).

En el entorno laboral, el impacto en la productividad es tangible. Kalliamvakou et al. (2023) reportan
incrementos de productividad de entre el 20 % y el 40 %. El asistente reduce el tiempo de resolucion
de errores , optimiza el codigo y mantiene al programador concentrado, evitando la dispersion cognitiva.
Esto redefine el rol del desarrollador: deja de ser un ejecutor de instrucciones para convertirse en un

gestor del conocimiento tecnoldgico, que interpreta, valida y supervisa los resultados generados por la

IA.

El analisis comparativo de las herramientas lideres revela diferencias significativas en su impacto.

Reportes de la industria, como los de OpenXcell (2024) y FutureAGI (2025), contrastan el rendimiento
de GitHub Copilot frente a Amazon CodeWhisperer, destacando que la eleccion de la herramienta
influye directamente en la velocidad del ciclo de desarrollo. A esto se suma la evidencia de
Kalliamvakou et al. (2023), quienes cuantificaron un aumento de productividad, aunque Chen et al.
(2021) matizan que la eficacia de modelos como Codex depende en gran medida de la calidad de los
datos de entrenamiento utilizados

Discusion sobre Riesgos, Desafios y Aspectos Eticos

A pesar de los beneficios, la adopcion de estos asistentes presenta riesgos significativos. El principal
desafio es la dependencia tecnoldgica. El desarrollador, al habituarse a soluciones inmediatas, puede
reducir su capacidad para analizar problemas de forma independiente. Con el tiempo, esto puede
erosionar la practica del razonamiento algoritmico, la depuracion manual y la resolucion auténoma de
problemas (Vaithilingam & Weng, 2022). En el contexto educativo, esto puede provocar un aprendizaje
superficial, donde el alumno memoriza respuestas sin internalizar los conceptos (De los Santos & Ortiz,
2023).

Existen también desafios técnicos. Las sugerencias pueden no ser siempre precisas, y la comprension
del contexto puede fallar en proyectos muy complejos (Vaithilingam y Weng, 2022).

Finalmente, surgen aspectos éticos y de seguridad. La privacidad del codigo es crucial si los modelos
de IA procesan cddigo propietario en servidores externos. Sandoval et al. (2022) advierten sobre el
riesgo de fugas de informacion confidencial o la incorporacion de codigo con licencias restrictivas.
También existe la posibilidad de que los modelos reproduzcan sesgos o patrones de codigo inseguros
presentes en sus datos de entrenamiento (Bender et al., 2021). El programador debe seguir siendo el
responsable final del cédigo implementado.

Propuesta de Evaluacion y Perspectivas Futuras

Para determinar la eficacia real de la herramienta, se propone un plan de evaluacion basado en métricas
cuantitativas y cualitativas.

Meétricas Cuantitativas: Incluiran la medicion del tiempo promedio de deteccion y correccion de errores,

la reduccion de errores recurrentes y el incremento en la velocidad de codificacion (Li et al., 2022;

Kochhar et al., 2023) .

Métricas Cualitativas: Se aplicaran encuestas de satisfaccion y entrevistas para analizar la percepcion
del desarrollador sobre la utilidad, claridad y confianza en las recomendaciones (Corso et al., 2024). Se
propone un analisis comparativo entre grupos que usen la herramienta y grupos de control (Azaiz et al.,
2023).

Mirando al futuro, las perspectivas de esta tecnologia apuntan a asistentes multimodales, capaces de
procesar texto, voz y diagramas (Zhu & Han, 2024). Se espera que los modelos evolucionen hacia un
aprendizaje continuo que se adapte al estilo y nivel del programador, ofreciendo no solo asistencia
técnica sino también retroalimentacion pedagogica (Xu et al., 2025) . El futuro se orienta a una
combinaciéon de modelos locales seguros y plataformas en la nube, equilibrando rendimiento y
privacidad (Savary-Leblanc et al., 2023; Xu et al., 2025) .

Evolucion Historica de los Asistentes de Programacion y su Integracion en IDEs

La presencia de asistentes inteligentes dentro de los entornos de desarrollo (IDEs) no surgi6é de manera
repentina, sino que es el resultado de varias décadas de avances en herramientas de apoyo al
programador. Comprender esta evolucion permite apreciar como la tecnologia ha pasado de ser un
recurso limitado a convertirse en un acompafante inteligente capaz de analizar, sugerir y generar codigo
dentro del propio entorno de trabajo. Esta perspectiva historica también muestra como han cambiado
las expectativas, los métodos de desarrollo y las herramientas que utilizan tanto estudiantes como
profesionales.

Los primeros intentos de asistencia automatizada en programacion se remontan a los afios setenta y
ochenta, cuando las herramientas se limitaban a resaltado de sintaxis, sugerencias basicas y sistemas de
autocompletado simples. Aunque rudimentarios, estos mecanismos marcaron el inicio de la idea de que
una herramienta podia facilitar el desarrollo disminuyendo errores sintacticos y acelerando la escritura
de cddigo. Sin embargo, estas primeras funciones estaban muy lejos de comprender la semantica o la
intencion del programador.

Durante los afios noventa y principios de los dos mil, aparecieron herramientas mas avanzadas como
IntelliSense de Microsoft o los sistemas de autocompletado inteligente de JetBrains. Estas herramientas

comenzaron a analizar la estructura interna del codigo y ofrecer sugerencias mas utiles, como completar

métodos disponibles, mostrar documentacion y advertir sobre errores comunes.

Aun asi, estas funciones seguian basandose en reglas estaticas y no en aprendizaje automatico, por lo
que su capacidad de adaptacion era limitada.

Un punto de inflexion ocurrié a partir de 2015 con la expansion del machine learning en aplicaciones
practicas. Modelos de prediccion empezaron a utilizarse para anticipar el siguiente fragmento de codigo,
aunque en versiones tempranas su precision aun era reducida. No fue sino hasta 2020-2021, con la
introduccion de modelos generativos de lenguaje como GPT o Codex, que la asistencia en programacion
dio un salto cualitativo: las herramientas comenzaron a comprender contexto, estilo y estructura del
proyecto, permitiendo sugerir funciones completas, explicar errores y generar documentacion.

Este avance permiti6 que los asistentes ya no fueran simples complementos, sino agentes inteligentes
integrados directamente en los IDEs, capaces de trabajar de forma colaborativa con el programador.
Herramientas como Copilot, CodeWhisperer, Codeium y las integraciones con ChatGPT marcaron una
nueva era en la que el desarrollador cuenta con retroalimentacion contextual avanzada, explicacion de
conceptos y generacion automatica de soluciones dentro del entorno de desarrollo.

Hoy en dia, la evolucion continia enfocandose en mejorar la comprension profunda del contexto del
proyecto, integrar modelos més rapidos y eficientes, y permitir personalizacién completa del estilo y
métodos de programacion. La tendencia actual apunta hacia asistentes capaces de interactuar con
repositorios completos, analizar pruebas automatizadas, y contribuir a todo el ciclo de vida del software,
desde la planeacion hasta el mantenimiento. En suma, la evolucion historica de los asistentes de
programacion refleja un progreso constante desde herramientas estaticas y limitadas, hasta sistemas
inteligentes capaces de interpretar la intencion del desarrollador y colaborar activamente en la creacion
de software. Este recorrido evidencia que la integracion de chats de asistencia en los IDEs no es solo
una innovacion reciente, sino la culminacion de décadas de avances tecnologicos orientados a facilitar,
mejorar y transformar la experiencia del programador.

Disefio Técnico Preliminar

El disefio técnico de un chat de asistencia embebido en un IDE requiere la integracion de multiples
tecnologias que permitan la comunicacién fluida entre el programador, el entorno de desarrollo y el

modelo de inteligencia artificial. La arquitectura propuesta estaria compuesta por tres capas principales:

la interfaz de usuario, el motor de analisis y la capa de inteligencia artificial.

La interfaz de usuario estaria embebida directamente dentro del IDE (por ejemplo, Visual Studio Code
o IntelliJ IDEA), permitiendo la interaccion natural mediante lenguaje escrito o incluso comandos de
voz. Este componente debe ser no intrusivo, configurable y accesible, garantizando una experiencia
ergonomica (Nguyen & Dang, 2023).

El motor de andlisis se encargaria de examinar el contexto del codigo —por ejemplo, el archivo actual,
los mensajes del compilador y la estructura del proyecto—. Mediante técnicas de analisis estatico, este
modulo identificaria errores, advertencias y posibles mejoras antes de ejecutar el programa, ofreciendo
retroalimentacion inmediata (Kim & Kim, 2024).

Finalmente, la capa de inteligencia artificial utilizaria modelos de procesamiento de lenguaje natural
(NLP) y aprendizaje automatico para generar respuestas contextualizadas. Estos modelos podrian
conectarse a redes locales o servicios en la nube, dependiendo del nivel de privacidad requerido. El
sistema se beneficiaria del aprendizaje continuo, ajustando sus respuestas a medida que el usuario
interactiia con el chat (Nghiem et al., 2024).

Desde una perspectiva técnica avanzada, el sistema también podria integrarse con repositorios de
control de versiones (como Git) para analizar el historial de cambios y sugerir soluciones coherentes
con la evolucion del proyecto. De esta manera, el disefio propuesto no solo mejora la productividad,
sino que también se alinea con las tendencias de desarrollo asistido por IA contextual y seguro.

Coémo funciona un chat embebido en un IDE

Vinculacion con el codigo y analisis del contexto

Un chat integrado en un IDE funciona al estar continuamente conectado al proyecto del desarrollador.
Esto le permite analizar en tiempo real el cddigo, los errores reportados por el compilador o intérprete,
y la estructura general del proyecto.

Gracias a esta integracion, el asistente puede detectar errores de sintaxis, inconsistencias logicas y
posibles vulnerabilidades, ofreciendo soluciones adaptadas al codigo especifico en lugar de respuestas

genéricas (Li et al., 2023). Esto reduce significativamente la necesidad de que el programador busque

informacidn en fuentes externas.

Interaccion mediante lenguaje natural

El chat permite que el desarrollador haga preguntas en lenguaje natural, tales como ";por qué ocurre
este error de compilacion?" o ";cual es la mejor manera de implementar esta funcion?". El sistema
procesa estas consultas usando técnicas de procesamiento de lenguaje natural (PLN) y devuelve
respuestas contextuales, ejemplos de codigo, recomendaciones de buenas practicas y posibles
alternativas de implementacion (Rustagi et al., 2024).

Este enfoque mejora la accesibilidad de la herramienta para desarrolladores de distintos niveles de
experiencia y facilita la comprension de problemas complejos sin interrumpir el flujo de trabajo.
Sugerencias proactivas y optimizacién del codigo

Mas alla de responder preguntas, un chat embebido puede actuar de manera proactiva, analizando
patrones de codigo repetidos y sugiriendo refactorizaciones, mejoras de rendimiento o alertas de
seguridad.

Por ejemplo, podria identificar un bucle innecesariamente complejo y recomendar una version mas
eficiente, o sefialar funciones duplicadas que podrian unificarse. Estas acciones permiten mantener un
cddigo mas limpio y eficiente, reduciendo errores futuros y aumentando la productividad (Weisz et al.,
2024).

Arquitectura técnica y soporte de IA

El funcionamiento técnico del chat combina varias tecnologias:

Procesamiento de lenguaje natural (PLN): para interpretar preguntas y generar respuestas
comprensibles.

Analisis estatico de codigo: para examinar la estructura, variables y dependencias del proyecto.
Modelos de inteligencia artificial o bases de datos especializadas: que permiten generar soluciones
adaptadas al contexto y aprender de la interaccion con el usuario.

Esta arquitectura permite que la interaccion sea rapida y contextualizada, evitando la pérdida de enfoque

del desarrollador y mejorando la eficiencia del proceso de programacion (Li et al., 2023; Rustagi et al.,

2024).

Imagen 2

Funcionamiento de un Chat de
Asistencia Inteligente Embebido en un
IDE

Motor de Analisis
» Codigo fuente y edicion

¢ Errores del compilador
Programador

¢ Estructura del proyecto

IA del Chat

Andlisis de intencion
y contextualizacion

Sugerencias Explicacion
Proactivas —
¢ Refactor @
* Optimizacion 74
:I: Equipos
Métodos o tipos
« Enfoque
de datos -
* Solucion

v

Resultado para el Usuario]

!

Personalizacion y aprendizaje continuo

En un contexto profesional, el chat puede ajustarse a las normas de codificacion de la empresa,
integrarse con sistemas de control de versiones y aprender de los errores y consultas mas frecuentes del
equipo. Esto permite que las recomendaciones se adapten progresivamente al estilo de programacion
de la compaiia y a las mejores practicas del proyecto, convirtiéndose en una herramienta de aprendizaje
continuo (De los Santos & Ortiz, 2023).

Limitaciones Técnicas y Desafios Actuales de los Asistentes Embebidos

A pesar de los importantes avances logrados por los chats de asistencia embebidos en los entornos de
desarrollo (IDEs), estas herramientas atin enfrentan limitaciones técnicas significativas que afectan su

precision, confiabilidad y capacidad de comprension del codigo. Estas limitaciones reflejan tanto

restricciones inherentes a los modelos de inteligencia artificial actuales como desafios derivados de la

complejidad del desarrollo de software moderno. Analizar estas debilidades es esencial para
comprender el estado actual de la tecnologia y las oportunidades de mejora futura.

Limitaciones en la comprension del contexto

Uno de los desafios mas importantes es la dificultad que los asistentes presentan para entender el
contexto completo de un proyecto, especialmente cuando se trata de repositorios extensos o con
multiples modulos relacionados entre si. Aunque estas herramientas pueden analizar fragmentos de
codigo, suelen tener problemas para comprender la estructura global, las dependencias entre archivos y
el flujo l6gico completo del programa.

Ademéds, su capacidad para interpretar codigo fragmentado es limitada; cuando el programador
proporciona solo una parte de una funcion o clase, el asistente puede generar respuestas imprecisas o
soluciones que no encajan en la arquitectura general del proyecto. Estas dificultades son especialmente
evidentes en sistemas legacy o en proyectos con poca documentacion, donde la IA tiene menos puntos
de referencia para contextualizar la informacion.

Restricciones de procesamiento

Los modelos de inteligencia artificial utilizados en los asistentes embebidos trabajan bajo restricciones
de procesamiento que influyen directamente en su rendimiento. La primera limitacion es el tamafo del
contexto que pueden analizar simultaneamente; debido a los limites de tokens, no pueden revisar
grandes cantidades de cddigo en una sola consulta, lo que reduce su capacidad para entender el estado
completo del proyecto.

Otra restriccion importante es la latencia. Muchos asistentes operan mediante servicios en la nube, lo
que implica que el cddigo debe enviarse a un servidor externo para ser procesado. Esto puede producir
demoras notables en conexiones lentas o inestables.

Ademas, algunos modelos requieren altos niveles de potencia computacional, lo que puede incrementar
el uso de memoria o CPU dentro del IDE y afectar negativamente el rendimiento del entorno de
desarrollo.

Dificultades con lenguajes altamente especializados

Aunque los asistentes embebidos estan entrenados con grandes volumenes de codigo, su desempeiio no

es uniforme en todos los lenguajes.

Suelen tener un rendimiento aceptable en lenguajes ampliamente utilizados como Python, JavaScript o
Java, pero encuentran mayores dificultades en lenguajes especializados o de bajo nivel, como C, Rust
o ensamblador.

Estos lenguajes requieren una comprension profunda de conceptos como manejo de memoria,
concurrencia o gestion de punteros, areas donde los modelos de IA pueden generar sugerencias
incorrectas o incompletas. Asimismo, presentan problemas al trabajar con frameworks muy nuevos,
bibliotecas poco documentadas o sintaxis altamente técnicas, donde la IA no dispone de suficientes
ejemplos para ofrecer respuestas precisas.

Riesgos de alucinaciones técnicas

Un problema recurrente en estos sistemas es la presencia de alucinaciones técnicas, es decir, respuestas
fabricadas o incorrectas generadas por el modelo. Estas alucinaciones pueden manifestarse de diversas
formas, como sugerir funciones que no existen, recomendar librerias incompatibles o escribir codigo
que no compila.

Estas situaciones no solo generan confusion en programadores principiantes, sino que también pueden
introducir vulnerabilidades o errores dificiles de detectar en proyectos profesionales. Aunque estos
errores son previsibles en modelos generativos, representan un desafio importante para la adopcion
totalmente confiable de asistentes embebidos en entornos criticos o de alta exigencia.

Desafios para el futuro

Los asistentes de desarrollo aun enfrentan multiples desafios para lograr un desempefio realmente
optimo. Entre los mas relevantes se encuentra la necesidad de ampliar la capacidad de contexto,
permitiendo que la IA analice repositorios completos sin perder coherencia. También es crucial mejorar
el razonamiento logico del modelo para evitar errores conceptuales y reducir las alucinaciones.

Otro desafio importante es la integracion del analisis estatico, dinamico y semantico del codigo dentro
de la propia IA, lo que permitiria una comprension mas profunda de la ejecucion real del programa.

Finalmente, sera necesario desarrollar modelos capaces de operar offline sin comprometer la privacidad

del usuario y sin requerir un consumo excesivo de recursos computacionales.

CONCLUSIONES

La presente investigacion ha examinado, desde una perspectiva tedrica y analitica, la pertinencia,
viabilidad y repercusiones de integrar un chat de asistencia inteligente embebido dentro de un entorno
de desarrollo integrado (IDE). Este estudio surgio a partir de la identificacion de un problema central
en la practica moderna de la programacion: la alta carga cognitiva a la que se enfrenta el desarrollador
debido a la administracion simultanea de multiples niveles de abstraccion, la necesidad de recordar
estructuras complejas y la constante interrupcion provocada por la busqueda externa de soluciones.
Dichos factores impactan directamente en la productividad y alteran el flujo mental requerido para
mantener una concentracion sostenida durante las tareas de desarrollo de software.

El andlisis del marco tedrico permitié comprender que los retos actuales del programador no son
unicamente de caracter técnico, sino profundamente cognitivos. La naturaleza lineal del pensamiento
humano contrasta con la estructura altamente modular y paralela de los sistemas de software; como
resultado, cada vez que el programador abandona el IDE para consultar documentacion, foros o
ejemplos, experimenta una pérdida de continuidad conocida como context switching, la cual genera un
costo mental considerable y afecta la calidad del trabajo. A partir de este planteamiento, la investigacion
propone que un asistente inteligente embebido constituye una respuesta viable y coherente con la
necesidad de disminuir estas interrupciones, ya que centraliza la informacion, reduce el esfuerzo de
blsqueda y ofrece apoyo contextual sin abandonar el entorno de programacion.

Desde esta perspectiva, la hipotesis tedrica planteada sostiene que un asistente embebido puede operar
como una suerte de sistema experto integrado, capaz de interpretar el cddigo en tiempo real, detectar
posibles errores, sugerir mejoras y proporcionar explicaciones detalladas en lenguaje natural. Dicho
sistema no sustituye el conocimiento del programador, sino que actiia como un complemento que ayuda
a reforzar buenas practicas, mejorar la refactorizacion continua y reducir la complejidad cognitiva a la
que estd expuesto el usuario. La IA se convierte asi en un agente colaborativo que acompaiia la
construccion del software, no como un reemplazo, sino como una extension de las capacidades
humanas.

Los resultados teoricos del analisis realizado permiten afirmar que la integracion de un chat de asistencia

embebido tiene un impacto profundo en dos dimensiones fundamentales: la educativa y la profesional.

En el ambito educativo, estos asistentes funcionan como un tutor personalizado, capaz de brindar
retroalimentacion inmediata, explicar conceptos de programacion, sugerir ejemplos, guiar la resolucion
de errores y acompanar la curva de aprendizaje. Esta herramienta contribuye a un aprendizaje
significativo, reduce la frustracion tipica de los programadores novatos y facilita la adquisicion de
habilidades esenciales. Para el estudiante, recibir orientacion en tiempo real dentro del IDE acorta la
distancia entre "aprender" y "hacer", acelerando la comprension y favoreciendo la autonomia formativa.
En el ambito profesional, el impacto se orienta principalmente hacia la productividad y Ia
transformacion del rol del programador. Al eliminar parte del tiempo dedicado a tareas mecéanicas o
repetitivas —como escribir estructuras bdésicas, investigar sintaxis especificas o corregir errores
comunes— el asistente permite que el desarrollador concentre sus esfuerzos en actividades de mayor
valor, como la arquitectura, la validacion conceptual y el disefio de soluciones. Esto no solo mejora la
eficiencia individual, sino que redefine la dindmica de trabajo en los equipos de desarrollo,
promoviendo flujos mas agiles y colaborativos. En este sentido, el programador transita de ser un
gjecutor constante a convertirse en un supervisor estratégico que guia y evalua el cddigo generado con
el apoyo de la IA.

Sin embargo, la investigacion también revela que la introduccion de estos sistemas no esta exenta de
riesgos y desafios significativos. El primero y mas evidente es la dependencia tecnologica. Si el
programador utiliza de manera indiscriminada o acritica el asistente, puede verse afectada su capacidad
de razonamiento logico, resolucion de problemas y comprension profunda del codigo. Esto podria
generar profesionales técnicamente funcionales, pero carentes de habilidades fundamentales para
enfrentar situaciones no previstas por la IA. Asimismo, los estudiantes que dependen excesivamente
del asistente podrian desarrollar un aprendizaje superficial, basado mas en la repeticion que en la
comprension conceptual.

A nivel ético y de seguridad, la investigacion identifica preocupaciones relacionadas con la privacidad
del coédigo propietario, el posible almacenamiento de fragmentos en servidores externos y la
responsabilidad legal frente a errores generados por la IA. Estos aspectos requieren regulaciones claras,

politicas de uso responsables y mecanismos de supervision para evitar riesgos como filtraciones, mal

uso de datos o problemas de licenciamiento del codigo sugerido por el asistente.

La implementacion de estas herramientas debe ir acompafiada de un marco normativo que proteja a los
usuarios y garantice que la herramienta opere bajo pautas transparentes y confiables.
Finalmente, esta investigacion establece una base tedrica solida para justificar la pertinencia, el
potencial y la relevancia de los asistentes embebidos en IDEs. No obstante, al tratarse de un estudio
tedrico, es necesario reconocer que los postulados aqui expuestos deben validarse empiricamente. Por
ello, se recomienda que investigaciones futuras desarrollen prototipos funcionales y apliquen métricas
cuantitativas y cualitativas para medir de forma objetiva la reduccion de la carga cognitiva, la mejora
en la productividad y la aceptacion general por parte de los usuarios. Mediante estos estudios
experimentales sera posible comprobar y refinar las hipotesis propuestas, asi como establecer
lineamientos precisos para la implementacion Optima de asistentes inteligentes embebidos en entornos
de programacion reales.
REFERENCIAS BIBLIOGRAFICAS
Yetistiren, B., Ozsoy, 1., Ayerdem, M., & Tiiziin, E. (2023). Evaluating the code quality of
Al-assisted code generation tools: An empirical study on GitHub Copilot, Amazon

CodeWhisperer, and ChatGPT. arXiv. Recuperado de https://arxiv.org/abs/2304.10778

Cavalcante, S. (2025). A case study with GitHub Copilot and other Al assistants. SCITEPRESS
Digital Library. Recuperado de

https://www.scitepress.org/Papers/2025/132947/132947 .pdf

Sergeyuk, A. (2025). Using Al-based coding assistants in practice. ScienceDirect. Recuperado de

https://www.sciencedirect.com/science/article/abs/pii/S0950584924002155

Qodo.ai. (2025). 20 best Al coding assistant tools [Updated Aug 2025]. Recuperado de

https://www.godo.ai/blog/best-ai-coding-assistant-tools/

OpenXcell. (2024). CodeWhisperer vs Copilot: Battle of the code assistants. Recuperado de

https://www.openxcell.com/blog/codewhisperer-vs-copilot/

JetBrains. (2023). JetBrains Al | Intelligent coding assistance, Al solutions, and more. Recuperado

de_https://www.jetbrains.com/ai/

FutureAGI. (2025). Al coding assistant 2025: Copilot vs Cursor vs CodeWhisperer. Recuperado

de https://futureagi.com/blogs/github-copilot-vs-cursor-vs-codewhisperer-2025

https://arxiv.org/abs/2304.10778
https://www.scitepress.org/Papers/2025/132947/132947.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0950584924002155
https://www.sciencedirect.com/science/article/abs/pii/S0950584924002155
https://www.qodo.ai/blog/best-ai-coding-assistant-tools/
https://www.openxcell.com/blog/codewhisperer-vs-copilot/
https://www.jetbrains.com/ai/
https://futureagi.com/blogs/github-copilot-vs-cursor-vs-codewhisperer-2025

Visual Studio Magazine. (2024). GitHub Copilot tops research report on Al code assistants.

Recuperado de https://visualstudiomagazine.com/articles/2024/08/26/github-copilot-tops-

research-report-on-ai-code-assistants.aspx

Computer Society. (2025). Top 5 Al coding assistants and their pros and cons. Recuperado de

https://www.computer.org/publications/tech-news/trends/top-five-coding-assistants/

Tech Research Online. (2025). GitHub Copilot vs. Amazon CodeWhisperer. Recuperado de

https://techresearchonline.com/blog/github-copilot-vs-amazon-codewhisperer/

Mantel Group. (2023). Best Al coding assistant tools in 2023. Recuperado

dehttps://mantelgroup.com.au/best-ai-coding-assistant-tools-in-2023/

Forte Group. (2024). Research shows Al coding assistants can improve

productivity.Recuperado de https://fortegrp.com/insights/ai-coding-assistants

Ahmad, W., Ahmad, A., Li, L., & Neubig, G. (2021). Transformers for code: How far are we? IEEE
Transactions on Software Engineering, 47(12), 1234-1250

https://doi.org/10.1109/TSE.2021.3051123

Alhoshan, W., & Wang, X. (2022). Al-driven developer tools: Opportunities and challenges.

Journal of Systems and Software, 191, 111409. https://doi.org/10.1016/].jss.2022.111409

Azaiz, 1., Deckarm, O., & Strickroth, S. (2023). Al-enhanced auto-correction of programming
exercises: How effective is GPT-3.5? arXiv preprint arXiv:2306.04522.

Barke, S., James, E., & Bird, C. (2023). Grounded Copilot: How programmers interact with code
suggestions. In Proceedings of the 45th International Conference on Software Engineering

(ICSE °23). IEEE/ACM. https://doi.org/10.1109/ICSE.2023.00068

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of
stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency (FAccT °21), 610-623.

https://doi.org/10.1145/3442188.3445922

Chen, M., Tworek, J., Jun, H., yuan, Q., De Oliveira Pinto, H. P., Kaplan, J., ... & Zaremba, W.

(2021). Evaluating large language models trained on code. arXiv preprint

arXiv:2107.03374.

https://visualstudiomagazine.com/articles/2024/08/26/github-copilot-tops-research-report-on-ai-code-assistants.aspx
https://visualstudiomagazine.com/articles/2024/08/26/github-copilot-tops-research-report-on-ai-code-assistants.aspx
https://www.computer.org/publications/tech-news/trends/top-five-coding-assistants/
https://techresearchonline.com/blog/github-copilot-vs-amazon-codewhisperer/
https://mantelgroup.com.au/best-ai-coding-assistant-tools-in-2023/
https://fortegrp.com/insights/ai-coding-assistants
https://doi.org/10.1109/TSE.2021.3051123
https://doi.org/10.1016/j.jss.2022.111409
https://doi.org/10.1109/ICSE.2023.00068
https://doi.org/10.1145/3442188.3445922

Corso, V., Mariani, L., Micucci, D., & Riganelli, O. (2024). Assessing Al-based code
assistants in method generation tasks. In ICSE-Companion ’24: IEEE/ACM 46th
International Conference on Software Engineering (Companion Proceedings). IEEE/ACM.

Kalliamvakou, E., Guo, P. J., & Murphy, G. C. (2023). An empirical study on the impact of Al
coding assistants on developer productivity. ACM Transactions on Software Engineering

and Methodology (TOSEM), 32(5), 1-25. https://doi.org/10.1145/3591504

Perry, N., Srivastava, D., Kumar, D., & Boneh, D. (2023). Do Users Write More Insecure Code with
Al Assistants? En Proceedings of the 2023 ACM SIGSAC Conference on Computer and

Communications Security (CCS '23). Association for Computing Machinery.

https://doi.org/10.1145/3576915.3623157

Prather, J., Denny, P., Leinonen, J., Becker, B. A., Albluwi, 1., Craig, M., ... & Smith, J. (2023). The
Robot Dog Ate My Homework: Implications of Large Language Models on Programming
Education. En Proceedings of the 2023 Conference on Innovation and Technology in Computer

Science Education (ITiCSE V. 1). ACM. https://doi.org/10.1145/3587102.3588794

Vaithilingam, P., Zhang, T., & Glassman, E. L. (2022). Expectation vs. Experience: Evaluating the
Usability of Code Generation Tools Powered by Large Language Models. En CHI Conference
on Human Factors in Computing Systems (CHI 22). ACM.

https://doi.org/10.1145/3491102.3517739

Kalliamvakou, E. (2022). Research: Quantifying GitHub Copilot’s Impact on Developer Productivity

and Happiness. GitHub.blog. Recuperado de https://github.blog/2022-09-07-research-

quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

Chen, M., Tworek, J., Jun, H., Yuan, Q., De Oliveira Pinto, H. P., Kaplan, J., ... & Zaremba, W. (2021).
Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.
FutureAGI. (2025). Al coding assistant 2025: Copilot vs Cursor vs CodeWhisperer. Recuperado de

https://futureagi.com/blogs/github-copilot-vs-cursor-vs-codewhisperer-2025

Kalliamvakou, E., Guo, P. J., & Murphy, G. C. (2023). An empirical study on the impact of Al coding

assistants on developer productivity. ACM Transactions on Software Engineering and

Methodology (TOSEM), 32(5), 1-25. https://doi.org/10.1145/3591504

https://doi.org/10.1145/3591504
https://doi.org/10.1145/3576915.3623157
https://doi.org/10.1145/3587102.3588794
https://doi.org/10.1145/3491102.3517739
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://futureagi.com/blogs/github-copilot-vs-cursor-vs-codewhisperer-2025
https://doi.org/10.1145/3591504

OpenXcell. (2024). CodeWhisperer vs Copilot: Battle of the code assistants. Recuperado de

https://www.openxcell.com/blog/codewhisperer-vs-copilot/

https://www.openxcell.com/blog/codewhisperer-vs-copilot/

