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RESUMEN 

La contaminación ambiental generada por plásticos de un solo uso constituye un desafío global que 

impulsa el desarrollo de materiales biodegradables basados en recursos renovables. En este estudio se 

desarrollaron y caracterizaron biopelículas biodegradables mediante la técnica de casting, empleando 

harina de cáscara de chocho (Lupinus mutabilis) y almidón de yuca (Manihot esculenta), subproductos 

agroindustriales abundantes en Ecuador. Se aplicó un diseño experimental factorial con el objetivo de 

optimizar la formulación y evaluar la influencia de los componentes sobre las propiedades 

fisicoquímicas, mecánicas y de biodegradabilidad del material. Las biopelículas obtenidas presentaron 

espesores entre 0.15 y 0.43 mm, contenidos de humedad de 12.83–24.85% y solubilidades en agua 

comprendidas entre 21.94 y 48.66%. La permeabilidad al vapor de agua se situó en el orden de 10⁻⁷ 

g·mm/cm²·h·Pa, valores significativamente superiores a los del polietileno de baja densidad (LDPE) 

utilizado como control (3.15 × 10⁻¹² g·mm/cm²·h·Pa), reflejando la naturaleza hidrofílica de la matriz 

biopolimérica. Entre las formulaciones evaluadas, el tratamiento T3 evidenció el mejor compromiso 

entre propiedades, mostrando una menor permeabilidad al vapor de agua en comparación con las demás 

formulaciones. Desde el punto de vista mecánico, las biopelículas alcanzaron resistencias máximas a la 

tracción de hasta 6.02 N y deformaciones máximas de 3.99 mm, valores adecuados para aplicaciones 

que no requieren alta carga estructural. Los ensayos de integridad en simulantes alimentarios (agua 

destilada y aceite de oliva) demostraron una mayor estabilidad estructural y baja permeabilidad en 

medios grasos, mientras que en medio acuoso se observó una pérdida progresiva de integridad. Las 

pruebas de biodegradabilidad en suelo evidenciaron una degradación significativa del material en un 

periodo de 28 días. Con base en su comportamiento mecánico, estabilidad en medios lipídicos y rápida 

biodegradación, se propone el uso potencial de estas biopelículas como material biodegradable para 

separadores entre láminas de queso mozzarella. En conjunto, los resultados indican que, particularmente 

la formulación T3, estas biopelículas representan una alternativa técnica y ambientalmente viable a los 

plásticos convencionales, contribuyendo a la economía circular mediante la valorización de residuos 

agroindustriales y el desarrollo de materiales sostenibles de origen local. 

 

Palabras clave: Biofilms, Lupinus mutabilis, cassava starch, mechanical properties, by-product 

valorization 
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Development and characterization of biodegradable biofilms based on agro-

industrial residues such as chocho (LUPINUS MUTABILIS) husk and 

cassava starch (MANIHOT ESCULENTA) 
 

ABSTRACT 

The increasing environmental burden caused by single-use plastics has intensified the search for 

biodegradable materials derived from renewable resources. In this study, biodegradable biopolymer 

films were developed and characterized using the casting technique, incorporating Lupinus mutabilis 

(chocho) pod flour and cassava (Manihot esculenta) starch, two abundant agro-industrial by-products in 

Ecuador. A factorial experimental design was applied to optimize the film formulation and to evaluate 

the influence of the biopolymeric components on the physicochemical, mechanical, and biodegradation 

properties of the resulting materials. The obtained films exhibited thicknesses ranging from 0.15 to 0.43 

mm, moisture contents between 12.83 and 24.85%, and water solubility values of 21.94–48.66%. Water 

vapor permeability (WVP) was in the order of 10⁻⁷ g·mm·cm⁻²·h⁻¹·Pa⁻¹, which is several orders of 

magnitude higher than that of low-density polyethylene (LDPE) used as a reference material (3.15 × 

10⁻¹² g·mm·cm⁻²·h⁻¹·Pa⁻¹), reflecting the inherently hydrophilic nature of the biopolymer matrix. 

Among the evaluated formulations, treatment T3 exhibited the most balanced performance, showing 

reduced WVP compared to the other formulations. Mechanical testing revealed maximum tensile forces 

of up to 6.02 N and elongation values reaching 3.99 mm, indicating adequate mechanical integrity for 

low-load packaging applications. Film integrity tests conducted in food simulants (distilled water and 

olive oil) demonstrated higher structural stability and lower permeability in lipid media, whereas a 

progressive loss of integrity was observed in aqueous environments. Soil burial biodegradation assays 

confirmed a significant degradation of the films within 28 days. Based on their mechanical performance, 

lipid-media stability, and rapid biodegradability, these biopolymer films are proposed as biodegradable 

separator materials for mozzarella cheese slices. Overall, the results demonstrate that chocho pod flour–

cassava starch films, particularly formulation T3, constitute a technically feasible and environmentally 

sustainable alternative to conventional plastic materials, contributing to circular economy strategies 

through the valorization of agro-industrial residues. 

 

Keywords: Biopolymer films, Lupinus mutabilis, cassava starch, mechanical properties, by-product 

valorization 
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INTRODUCCIÓN 

En los últimos años, la generación de residuos plásticos provenientes de envases alimentarios ha 

intensificado los problemas de contaminación ambiental debido a su baja tasa de degradación y 

persistencia en los ecosistemas (Perera et al., 2023). Este escenario ha motivado la exploración de 

alternativas sostenibles basadas en biopolímeros tales como almidones, proteínas y fibras vegetales, los 

cuales se caracterizan por su alta disponibilidad, bajo costo y biodegradabilidad (Zavareze & Dias, 

2022). En este contexto, las biopelículas obtenidas a partir de subproductos agroindustriales se 

posicionan como una opción prometedora para el desarrollo de materiales de envasado ecológicos. 

El chocho genera cáscaras ricas en fibra dietaria, compuestos fenólicos y minerales, las cuales pueden 

contribuir a la mejora de las propiedades funcionales de las biopelículas (Ichina, 2021). Por su parte, el 

almidón de yuca se emplea ampliamente debido a su capacidad filmógena, transparencia y 

biodegradabilidad (López et al., 2023); no obstante, presenta limitaciones asociadas a su baja resistencia 

mecánica y elevada permeabilidad al vapor de agua. La incorporación de fibras provenientes de la 

cáscara de chocho podría mejorar estos parámetros, aunque plantea desafíos relacionados con la 

compatibilidad interfacial y el equilibrio entre flexibilidad, solubilidad y biodegradabilidad. En 

consecuencia, el objetivo del presente estudio fue caracterizar una biopelícula degradable elaborada a 

partir de cáscara de chocho y reforzada con almidón de yuca, destinada a aplicaciones en el sector 

alimentario, mediante la evaluación de sus propiedades fisicoquímicas, mecánicas y de biodegradación, 

como una alternativa sostenible frente a los envases plásticos convencionales. 

Los recortes industriales de cuero (“wet blue leather, WBL”) y las cáscaras de huevo provenientes de 

residuos alimentarios han sido ampliamente estudiados como rellenos sostenibles y de bajo costo para 

matrices poliméricas y otros sistemas, principalmente con el propósito de incrementar la rigidez y la 

estabilidad térmica, al mismo tiempo que se promueve la valorización de residuos. 

Tipos de composites y aplicaciones objetivo 

• Wet blue leather (WBL): Se ha incorporado en matrices como PLA, PA12, TPU, TPE, PBAT, 

PBS, caucho natural, PP reciclado, PVB y otros sistemas, orientados a aplicaciones estructurales, 

productos con apariencia tipo cuero y elastómeros (Nanni et al., 2021; Ambrósio et al., 2011;  Moses et 

al., 2017). 
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• Cáscara de huevo: Se ha utilizado en termoplásticos (LDPE, PP, PVC, epóxicos, GFRP), películas de 

almidón, materiales de cambio de fase a base de PEG, metales, cerámicos y bioimplantes híbridos 

(Vandeginste, 2021; Admase et al., 2025; Aribia et al., 2024; Gbadeyan et al., 2020; Sunardi et al., 2023; 

Perera et al., 2025; Shukla et al., 2024; Shin et al., 2020; Skórczewska et al., 2022). 

• Existen además aplicaciones en el ámbito de la construcción y materiales cementicios para virutas de 

WBL (Canhada et al., 2023) y para CaCO₃ derivado de cáscara de huevo (Vandeginste, 2021; Sunardi 

et al., 2023). 

• Los composites con WBL se producen comúnmente mediante mezclado en fundido (extrusores de 

doble tornillo o mezcladores internos), seguido de moldeo por inyección o compresión. Sus propiedades 

están fuertemente influenciadas por la relación de aspecto de las fibras de cuero y la compatibilidad con 

la matriz (Nanni et al., 2021;  Raksaksri & Phunpeng, 2022; Nazir et al., 2024). 

La cáscara de huevo suele someterse a lavado, secado y molienda (y en algunos casos calcinación o 

carbonización), para luego ser incorporada por mezclado en fundido o por moldeo por colada (casting). 

La reducción del tamaño de partícula y los tratamientos superficiales mejoran la dispersión y los 

incrementos en las propiedades mecánicas (Vandeginste, 2021; Sunardi et al., 2023; Perera et al., 2025; 

Shin et al., 2020; Skórczewska et al., 2022). 

Ambos rellenos contribuyen a la reducción de residuos peligrosos o voluminosos y disminuyen el uso 

de CaCO₃ mineral virgen (Nanni et al., 2021; Vandeginste, 2021; Sunardi et al., 2023; Canhada et al., 

2023). 

Las cáscaras de huevo aportan estabilidad térmica, propiedades barrera y, en algunos sistemas, 

capacidad de almacenamiento de energía por cambio de fase (Admase et al., 2025; Aribia et al., 2024; 

Skórczewska et al., 2022). 

El WBL y el polvo de cuero pueden encapsularse de manera segura en matrices poliméricas o 

cementicias, limitando la lixiviación de cromo y generando materiales funcionales (Canhada et al., 2023; 

Moses et al., 2017). 

Los composites basados en residuos de cuero wet blue y polvo de cáscara de huevo muestran de manera 

consistente un incremento en la rigidez y, con frecuencia, mejoras en la resistencia mecánica y la 

estabilidad térmica, a costa de una reducción en la ductilidad cuando la adhesión interfacial no se 
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encuentra optimizada. La selección de la matriz, el tamaño y la relación de aspecto de las partículas, así 

como la modificación superficial, son factores críticos para ajustar el desempeño del material, 

permitiendo que estos rellenos derivados de residuos contribuyan al desarrollo de materiales sostenibles 

de grado ingenieril. 

METODOLOGÍA 

Obtención de la cascara de chocho y almidón de yuca 

La cáscara, de chocho desamargado, y pulverizada se adquirió en Sigchos, Cotopaxi, Ecuador, mientras 

que el almidón de yuca se obtuvo en mercados de Ambato. 

Caracterización de la cáscara de chocho y almidón de yuca 

• Índice de solubilidad en agua, absorción de agua y poder de hinchamiento: 

• Los ensayos se realizaron siguiendo la metodología propuesta por Ichina (2021). Se pesaron 

1,25 g de muestra seca, a los que se adicionaron 30 mL de agua destilada previamente calentada 

a 60 °C. La suspensión se agitó de manera constante y se incubó en un baño termostatizado a 

60 °C durante 30 min, con el fin de promover la hidratación y el hinchamiento del material. 

Posteriormente, la mezcla se centrifugó a 4900 rpm durante 30 min, separándose la fracción 

gelificada del sobrenadante. Finalmente, se cuantificaron la fracción insoluble y el gel formado 

para el cálculo del índice de solubilidad en agua, la absorción de agua y el poder de 

hinchamiento. 

• pH: Según INEN-ISO 1842 (INEN, 2013), se preparó una disolución de 5 g de muestra en 25 

mL de agua, agitando hasta homogeneizar y midiendo con pH-metro calibrado a 25 °C. 

• Humedad: Se pesaron 5 g de muestra y se determinó en balanza de humedad infrarroja (Mettler 

Toledo, 2023). 

• Contenido de ceniza: Se pesaron 3 g de muestra y se incineró a 550 °C en mufla (AOAC, 2019). 

• Viscosidad: Se disolvieron 25 g de cada muestra en 500 mL de agua, se hirvió 10 min, se enfrió 

a 25 °C y se midió con viscosímetro (Brookfield Engineering, 2021). 

• Entalpía y temperatura de gelatinización: Se analizaron 5–10 mg de muestra en DSC (Mettler 

Toledo, 2024), registrando el pico endotérmico y calculando ΔH. 
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Formulación y desarrollo de la biopelícula 

Se mezcló cáscara de chocho, almidón de yuca, glicerol y agua según el diseño experimental. Se 

homogenizó y calentó hasta gelatinización (80 °C), se enfrió a 60 °C y se incorporó glicerol, hasta 

homogeneizar. Por casting, se vertieron ~20 g de mezcla en cajas Petri y se secaron a 60 °C durante 12–

24 h (Urgilés, 2021). 

Diseño Experimental 

Se aplicó un diseño factorial de tres factores y dos niveles (Moreno et al., 2024), variando 

concentraciones de cáscara de chocho, almidón de yuca y glicerol, manteniendo ácido acético (0,5 %) y 

agua (80 %) constantes, como control se utilizaron bolsas de plástico de polietileno comercial de espesor 

0,03 mm. Se utilizó un análisis estadístico ANOVA para determinar si los factores tuvieron un efecto 

significativo en las propiedades de la biopelícula. 

Tabla 1. Diseño experimental factorial para la formulación de biopelículas 

Tratamiento 
A: Cáscara de Chocho 

(%) 

B: Almidón de yuca 

(%) 

C: Glicerina 

(%) 

T1 3,5 2,5 3,5 

T2 7 2,5 3,5 

T3 3,5 6 3,5 

T4 7 6 3,5 

T5 3,5 2,5 6,5 

T6 7 2,5 6,5 

T7 3,5 6 6,5 

T8 7 6 6,5 
                   Control = Bolsa de polietileno de baja densidad 

 

Caracterización de las biopelículas 

Propiedades fisicoquímicas y funcionales 

• Espesor: Se midieron muestras de 2,5×2,5 cm con micrómetro (Ichina, 2021) y se calculó el 

promedio por tratamiento. 

• Humedad: Se pesó 3 g de biopelícula y se determinó en la balanza de humedad por infrarrojo 

(Mettler Toledo, 2023). 

• Solubilidad en agua: Muestras de 4×4 cm se agitaron en agua durante 1 h, filtraron y secaron a 

40 °C (Urgilés, 2021). 
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• Permeabilidad al vapor de agua: Se utilizó gel de sílice, desecador a 100% HR y pesaje cada 

hora durante 6 h; se calculó WVP según ASTM D1653-93 (ASTM International, 2021). 

• Viscosidad: Se evaluaron soluciones de 3 g de muestra en RVA antes del secado (Perten 

Instruments, 2011). 

• Entalpía de gelatinización: Muestras de 5–10 mg se analizaron con DSC, registrando el pico 

endotérmico y ΔH (Mettler Toledo, 2024). 

Propiedades funcionales 

• Color: Se midió con colorímetro Konica Minolta (2023) en parámetros L*, a*, b*. 

• Transparencia: Se evaluó por espectrofotometría UV-VIS (200–800 nm) según Moreno et al. 

(2024). 

Propiedades mecánicas y biodegradables 

• Resistencia mecánica: Ensayo de tracción con analizador de textura Brookfield CT3. 

• Propiedades térmicas: El análisis DSC se realizó en un equipo TA Instruments, utilizando 

cápsulas de aluminio y una cápsula vacía como referencia. Se analizaron 30–40 mg de muestra 

bajo atmósfera de nitrógeno con un flujo de 20 mL/min. Los ensayos se efectuaron desde 

temperatura ambiente hasta 300 °C, registrándose el flujo de calor en función de la temperatura. 

A partir de los termogramas se determinaron Tonset, Tend y la entalpía de gelatinización (ΔH) 

mediante la integración del pico endotérmico, con corrección de línea base y normalización por 

la masa de la muestra (J/g). 

• Integridad: Evaluación en simuladores de alimentos (agua destilada y aceite de oliva) siguiendo 

ASTM D1653-93 (2021) y RTE INEN 100 (2014). 

• Biodegradabilidad: Se expusieron a aire, agua y entierro en suelo orgánico con seguimiento 

visual durante 28 días (Urgilés, 2021). 

RESULTADOS Y DISCUSIÓN 

Caracterización de la materia prima 

Índice de solubilidad en agua, absorción de agua y poder de hinchamiento 

Los resultados presentados en la Figura 1, evidencian que el almidón de yuca exhibió una mayor 

absorción de agua (6,09 g/g) y mayor poder de hinchamiento (6,15 g/g) en comparación con la cáscara 
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de chocho (3,65 g/g y 3,69 g/g, respectivamente), diferencias que resultaron estadísticamente 

significativas (p < 0,001). Este comportamiento se atribuye a la composición estructural del almidón, el 

cual está constituido típicamente por 20–30 % de amilosa y 70–80 % de amilopectina, siendo esta última 

responsable de la elevada capacidad de hidratación y expansión granular debido a su estructura 

altamente ramificada (Chamorro et al., 2025). En contraste, la cáscara de chocho contiene una mayor 

proporción de fibra insoluble y estructuras lignificadas, las cuales restringen la penetración del agua y 

limitan los fenómenos de hinchamiento y absorción. Por el contrario, la solubilidad en agua fue similar 

para ambas matrices (3,22 % en almidón y 3,08 % en cáscara), sin diferencias significativas (p = 0,390), 

lo que indica que este parámetro no constituye un criterio discriminante para diferenciar funcionalmente 

el comportamiento hidrofílico de ambos materiales. 

Figura 1. Análisis gráfico de la solubilidad, absorción de agua y poder de hinchamiento del almidón de 

yuca y la harina de cáscara de chocho, donde (●) Almidón de yuca y (●) Cáscara de chocho 

 
 

Análisis de pH, humedad, ceniza y viscosidad 

El análisis fisicoquímico, presentado en la Tabla 2, mostró que ambos materiales tenían pH ligeramente 

ácido (almidón 5,56; cáscara 5,33; p = 0,069). El contenido de humedad fue mayor en el almidón (12,41 

%) que en la cáscara (7,20 %) (p < 0,01), mientras que la cáscara presentó más cenizas (2,14 % vs. 0,49 

%; p < 0,001), reflejando mayor concentración mineral. La viscosidad del almidón fue 

significativamente mayor, indicando su capacidad para formar geles tras la gelatinización, en contraste 

con la cáscara, cuya baja viscosidad se asoció a su alto contenido de fibra insoluble y menor porcentaje 

de polisacáridos que se pueden gelatinizar. El almidón de yuca mostró propiedades funcionales 

superiores para absorción de agua y formación de gel, mientras que la cáscara de chocho destacó por su 

aporte mineral y fibroso. 
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Tabla 2. Análisis de pH, humedad, ceniza y viscosidad del almidón de yuca y la cáscara de chocho. 

Parámetro Almidón de yuca Cáscara de chocho 

pH 5.56 ± 0.16 5.33 ± 0.15 

Humedad (%) 12.41 ± 0.22 7.20 ± 1.22 

Ceniza (%) 0.49 ± 0.09 2.14 ± 0.08 

Viscosidad (cP) 3350.83 ± 977.45 282.67 ± 67.68 

 

Entalpía de gelatinización 

Figura 1. Comparación de la entalpía de gelatinización entre el almidón de yuca y la cáscara de chocho, 

(●) Almidón de yuca y (●) Cáscara de chocho.  

 

Al revisar la Figura 2, la entalpía media de gelatinización del almidón de yuca fue de 27,16 ± 2,57 J/g, 

indicando la energía requerida para desorganizar su estructura cristalina durante la gelatinización. Este 

valor se encuentra dentro del rango reportado para almidones de tubérculos y raíces tropicales (18–25 

J/g, Wang et al., 2015; 20–23 J/g, Oliveira et al., 2018). En contraste, la cáscara de chocho presentó una 

entalpía significativamente menor, debido a su bajo contenido de almidón, mientras que almidones de 

maíz y papa muestran valores mayores (25–30 J/g) por diferencias en estructura granular, tamaño de 

cristal y contenido de amilosa (Sánchez & Martínez, 2017), evidenciando que las propiedades térmicas 

dependen del origen y procesamiento. 

Caracterización de la biopelícula 

Las biopelículas evaluadas mediante inspección visual presentaron una morfología homogénea y un 

comportamiento mecánico maleable, con la presencia de microburbujas aisladas que no comprometieron 

su integridad estructural. Estas características confirman que la adecuada gelatinización del almidón, 

junto con la acción plastificante del glicerol, favorece la formación de matrices biopoliméricas 
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continuas, flexibles y con resistencia mecánica suficiente, en concordancia con lo reportado en estudios 

previos (Muñoz et al., 2022). 

Espesor, humedad, solubilidad y permeabilidad al vapor de agua (PVA) 

Tabla 3. Propiedades fisicoquímicas de las biopelículas 

Tratamiento Espesor (mm) Humedad (%) Solubilidad (%) 

Permeabilidad  

(x10-7 g·mm/cm²·h·Pa) 

Control  0,03 ± 0,01a 0,27 ± 0,21 a 0,03 ± 0,00 a * 3,15 E-12 ± 0,00 a 

T1 0,40 ± 0,08 c 16,97 ± 0,67 d 24,40 ± 0,56 c 7,87 ± 0,19 h 

T2 0,38 ± 0,08 c 12,83 ± 0,71 c 48,66 ± 0,61 h 6,89 ± 0,15 f 

T3 0,15 ± 0,03 ab 14,82 ± 0,31 c 21,94 ± 0,87 b * 6,23 E-08 ± 1,17 b 

T4 0,43 ± 0,04 c 15,23 ± 0,91 c 31,43 ± 0,48 d 7,19 ± 0,03 g 

T5 0,29 ± 0,09 bc 24,85 ± 0,21g 33,26 ± 0,41 e 2,89 ± 0,14 d 

T6 0,25 ± 0,06 bc 17,36 ± 0,42 d 36,94 ± 0,82 f 2,25 ± 0,06 c 

T7 0,3 ± 0,07 bc 19,67 ± 0,75 e 22,17 ± 0,33 b 3,34 ± 0,07 e 

T8 0,39 ± 0,09 c 21,47 ± 0,58 f 42,43 ± 0,53 g 8,15 ± 0,10 h 

Nota. Letras diferentes indican diferencias significativas según la prueba de Tukey (p < 0,05). 

 

El análisis del espesor de las biopelículas (Tabla 3) evidenció que la composición de la formulación tuvo 

un efecto estadísticamente significativo sobre esta propiedad (prueba de Tukey, p < 0,05), observándose 

valores comprendidos entre 0,15 y 0,43 mm, en contraste con el material de control de polietileno de 

baja densidad (LDPE), que presentó un espesor significativamente menor (0,03 mm). Las formulaciones 

T1, T2, T4 y T8 conformaron el grupo con mayores espesores (letra “c”), mientras que el tratamiento 

T3 generó la biopelícula más delgada (0,15 ± 0,03 mm; grupo “ab”), evidenciando que la variación del 

espesor no respondió a un efecto lineal simple de los factores evaluados (Ali et al, 2019). 

El comportamiento observado sugiere la presencia de interacciones entre la cáscara de chocho (A) y el 

almidón de yuca (B). En formulaciones con bajo contenido de cáscara de chocho (3,5 %) y bajo 

plastificante (3,5 %), el incremento del almidón de yuca de 2,5 % (T1) a 6 % (T3) condujo a una 

reducción marcada del espesor, lo que puede asociarse a una mayor gelatinización y compactación de la 

matriz polimérica. En contraste, cuando la cáscara de chocho se incrementó a 7 %, el aumento del 
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almidón de yuca de 2,5 % (T2) a 6 % (T4) produjo un incremento del espesor, posiblemente debido a 

una mayor contribución de la fracción fibrosa que limita el empaquetamiento eficiente de las cadenas 

poliméricas. Este comportamiento confirma que el efecto del almidón sobre el espesor depende del nivel 

de fibra presente en la formulación (de Carvalho, 2021). 

Asimismo, el contenido de glicerina (C) mostró una tendencia general a reducir el espesor de las 

biopelículas, particularmente en formulaciones con bajo o moderado contenido de almidón, lo que puede 

atribuirse al aumento de la movilidad de las cadenas poliméricas y a una mejor redistribución de la 

matriz durante el secado. No obstante, este efecto también estuvo condicionado por la interacción con 

los factores A y B, reforzando la naturaleza multifactorial del sistema (Prashnanth, 2023). 

En comparación con el LDPE, las biopelículas presentaron espesores entre 5 y 14 veces superiores, lo 

cual es característico de materiales obtenidos por casting a partir de matrices hidrofílicas. Sin embargo, 

estos mayores espesores no se tradujeron en una mejora proporcional de las propiedades de barrera al 

vapor de agua, lo que pone de manifiesto que la permeabilidad está dominada principalmente por la 

naturaleza química de la matriz y no únicamente por el espesor del material (Ji, et al., 2021 ). En 

conjunto, los resultados confirman que el espesor de las biopelículas está fuertemente influenciado por 

la composición y las interacciones entre almidón, fibra y plastificante, constituyendo un parámetro clave 

para el diseño de formulaciones con propiedades funcionales controladas. 

En relación con las demás propiedades fisicoquímicas presentadas en la Tabla 3, todas las biopelículas 

mostraron contenidos de humedad significativamente superiores al material de control de polietileno de 

baja densidad (LDPE), cuyos valores fueron prácticamente despreciables. Las biopelículas presentaron 

humedades comprendidas entre 12,83 % y 24,85 %, lo que confirma el carácter marcadamente 

hidrofílico de las matrices basadas en almidón, fibra vegetal y glicerol. En general, las formulaciones 

con mayor contenido de glicerina tendieron a presentar mayores valores de humedad, evidenciando el 

efecto plastificante y la elevada afinidad del glicerol por el agua, aunque este comportamiento no fue 

estrictamente lineal, lo que sugiere la influencia de interacciones entre los componentes de la 

formulación (Siddhamsittiwar, 2025). 

La solubilidad en agua de las biopelículas se ubicó en un rango elevado (21,94–48,66 %), en marcado 

contraste con el LDPE, cuya solubilidad fue prácticamente nula. Los tratamientos T3 y T7 presentaron 
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los menores valores de solubilidad, lo que indica una mayor cohesión interna de la matriz biopolimérica 

y una menor fracción de componentes lixiviables. Por el contrario, los tratamientos T2 y T8 mostraron 

las mayores solubilidades, comportamiento que puede atribuirse a una mayor proporción de plastificante 

y a una estructura de red menos compacta, favoreciendo la disolución parcial del material en contacto 

con el agua. Estos resultados delimitan claramente el uso de las biopelículas en aplicaciones donde la 

exposición prolongada a medios acuosos debe ser evitada (Li, et al 2024). 

En cuanto a las propiedades de barrera, la permeabilidad al vapor de agua de las biopelículas se situó en 

el orden de 10⁻⁷ g·mm/cm²·h·Pa, valores varios órdenes de magnitud superiores a los del LDPE, lo que 

reafirma que la permeabilidad está dominada por la naturaleza química hidrofílica de la matriz más que 

por el espesor del material. Entre las formulaciones evaluadas, el tratamiento T3 presentó la menor 

permeabilidad, lo que sugiere una microestructura más compacta y una distribución más eficiente de los 

componentes poliméricos. No se observó una relación directa entre espesor y permeabilidad, ya que 

formulaciones más gruesas no necesariamente presentaron mejores propiedades de barrera, confirmando 

que la organización molecular y las interacciones intermoleculares son factores determinantes en el 

control de la transferencia de vapor de agua (Del Sommi, 2023). 

Viscosidad (RVA) 

Los resultados de viscosidad de las soluciones filmógenas mostraron variabilidad, de 52,00 cP en T5 

hasta 1 809,33 cP en T3, atribuible a mayores proporciones de almidón y menor plastificante que generan 

redes más densas. El pico de viscosidad en frío varió poco entre tratamientos (84,67–92,00 cP) y se 

alcanzó en tiempos similares (9,7–9,9 min), indicando que la fluidez inicial y la cinética del proceso no 

se vieron afectadas por la composición de las formulaciones. 
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Tabla 4. Análisis de viscosidad en el RVA de las soluciones filmógenas de los 8 tratamientos 

Tratamiento 

Viscosidad final 

(cP) 

Pico de viscosidad en frío 

(cP) 

Tiempo en alcanzar el pico 

(min) 

T1 112,00 ± 10,58 87,50 ± 3,54 9,90 ± 0,04 

T2 112,67 ± 18,58 90,00 ± 2,65 9,95 ± 0,04 

T3 1809,33 ± 466,07 85,67 ± 0,58 9,87 ± 0,12 

T4 743,33 ± 219,58 91,33 ± 2,08 9,65 ± 0,50 

T5 52,00 ± 17,35 84,67 ± 6,11 9,98 ± 0,04 

T6 88,00 ± 34,60 92,00 ± 7,55 9,98 ± 0,04 

T7 1464,00 ± 93,95 88,33 ± 0,58 9,98 ± 0,04 

T8 1180,67 ± 249,74 86,00 ± 3,46 9,73 ± 0,23 

 

Entalpía de gelatinización (DSC) 

Los tratamientos T3 y T7 presentaron entalpías de gelatinización de 7,20 ± 2,25 J/g y 6,44 ± 1,64 J/g, 

respectivamente, tal como se observa en las Figuras 3 y 4, donde ambos tratamientos muestran valores 

del mismo orden de magnitud y una superposición parcial de las barras de error. El tratamiento T3 

evidenció una entalpía ligeramente superior, lo que indica una mayor energía requerida para la 

disrupción de las regiones cristalinas de la matriz polimérica. Este comportamiento puede atribuirse a 

su mayor contenido de almidón y menor proporción de plastificante, lo que favorece una red más 

compacta y un mayor número de interacciones intermoleculares, especialmente enlaces de hidrógeno, 

incrementando la resistencia térmica del sistema (Zhiguang et al., 2022). 
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Figura 3. Termogramas DSC de las biopelículas correspondientes a los tratamientos a) T3 y b) T7 

 

a 

 

b 

Los valores de entalpía obtenidos son inferiores a los reportados para películas con matrices 

predominantemente proteicas o reforzadas con biopolímeros de alta cristalinidad, las cuales suelen 

presentar mayor estabilidad térmica debido a interacciones más fuertes entre cadenas (Saberi et al., 2016; 
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Muñoz et al., 2022). Estudios recientes han señalado que las biopelículas a base de almidón plastificado 

presentan entalpías relativamente bajas, asociadas a una menor organización cristalina y a la acción del 

plastificante, que reduce la energía necesaria para la transición térmica (Abdullah et al., 2022; López et 

al., 2023). En este contexto, los valores observados para T3 y T7 indican una estabilidad térmica 

moderada, adecuada para aplicaciones a temperaturas inferiores a 180–200 °C, evitando procesos 

térmicos severos que puedan inducir degradación del material o pérdida de sus propiedades funcionales 

(Pulgarín et al., 2022). 

Figura 4. Entalpía de gelatinización de los mejores tratamientos 

 

 

Propiedades ópticas 

Colorimetría 

La luminosidad (L*) de las biopelículas varió de 61,77 (LDPE) a 80,37 (T7), siendo más claras con 

mayor almidón y menor cáscara de chocho, ver Figura 5. Los valores de a* fueron cercanos a cero con 

tendencia a verde y b* predominó el amarillo, aumentando con más cáscara. El croma (C*) y ΔE 

confirmaron diferencias perceptibles frente al control. Estos resultados concuerdan con de Figueiredo 

(2025) y Orsuwan et al. (2017), indicando que la combinación de almidón de yuca y cáscara genera 

películas más claras y saturadas en amarillo. 
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Figura 5. Parámetros de color CIELAB (L, a, b*, C*, ΔE) de las biopelículas según tratamiento 

 

 

Absorbancia, transparencia e integridad 

Las biopelículas presentaron transparencia entre 0,51 y 6,16 %T, mientras que el control PEBD alcanzó 

80,45 %T, en la Figura 5. La opacidad dependió de la composición y del glicerol, coincidiendo con 

Moreno et al. (2024). En cuanto a las propiedades mecánicas, el tratamiento T4 mostró mayor resistencia 

con 6,02 N y menor flexibilidad de 0,26 mm, mientras que T3, T5 y el control fueron más flexibles con 

aproximadamente 4 mm pero menos rígidos, de acuerdo con Andrade-Mahecha (2012). La evaluación 

de integridad y permeabilidad reveló valores de permeabilidad al agua entre 6,27×10⁻⁹ y 1,77×10⁻⁶ 

g·mm/cm²·h·Pa y al aceite entre 1,18×10⁻⁹ y 7,26×10⁻⁷ g·mm/cm²·h·Pa. Los tratamientos con mayor 
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permeabilidad al agua perdieron integridad, mientras que la mayoría conservó su estructura frente al 

aceite, según ASTM D1653-93 (2021) y RTE INEN 100 (2014). 

Tabla 5. Análisis de transparencia, textura e integridad en las biopelículas 

Tratamiento 
Transparencia 

(%) 

Textura Integridad 

Pico de 

carga (N) 

Deformación 

(mm) 

Permeabilidad 

agua 

(g·mm/cm²·h·Pa) 

×10⁻⁶ 

Permeabilidad 

Aceite 

(g·mm/cm²·h·Pa) 

×10⁻⁷ 

T1 0,07 ± 0,06 ab 1,74 ± 0,22ab 2,78 ± 0,41 ab 
(1.77065 ± 

0.03520) h 

(1.58379 ± 

0.02006) g 

T2 0,01 ± 0,00 a 
1,51 ± 0,18 

ab 
1,28 ± 0,28 ab 

(1.47071 ± 

0.03443)g 

(7.25965 ± 

0.04263) h 

T3 6,30 ± 4,83 e 0,49 ± 0,05 a 3,94 ± 0,06 b 
(1.18777 ± 

0.03027) e 

(0.26258 ± 

0.04184) b 

T4 0,70 ± 0,34 cd 6,02 ± 3,60c 0,26 ± 0,14 a 
(1.27036 ± 

0.02044) d 

(0.65449 ± 

0.03912) c 

T5 1,13 ± 1,29 de 0,39 ± 0,06 a 3,24 ± 0,70 ab 
(1.01008 ± 

0.02160) b 

(0.73500 ± 

0.03408) d 

T6 0,50 ± 0,06 cd 0,82 ± 0,07 a 1,26 ± 0,04 ab 
(1.11009 ± 

0.02274) c 

(0.758579 ± 

0.02138) e 

T7 0,61 ± 0,16 cd 
1,86 ± 0,09 

ab 
3,90 ± 0,00 b 

(1.60356 ± 

0.02267) f 

(0.535421 ± 

0.03906) a 

T8 0,16 ± 0,14 bc 
1,18 ± 0,64 

ab 
2,51 ± 0,91 ab 

(1.07415 ± 

0.01575) a 

(2.21979 ± 

0.03876) f 

Control 82,57 ± 3,00 f 2,68 ± 0,38 b 3,99 ± 0,02 b 
  (0.00627 ± 

0.01565) a 

(0.01182 ± 

0.02077) a 
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Determinación de la biodegradabilidad de las biopelículas 

Las biopelículas elaboradas a partir de cáscara de chocho y almidón de yuca mostraron una degradación 

progresiva en suelo orgánico, con una pérdida de masa más acelerada en condiciones de mayor humedad 

y actividad microbiana. Durante las etapas iniciales, las películas conservaron su integridad estructural 

debido a la resistencia de la matriz biopolimérica; sin embargo, con el tiempo se evidenció un deterioro 

gradual, en concordancia con lo reportado por Silva et al. (2020). Estos resultados confirman su 

potencial como materiales biodegradables, adecuados para su disposición en entornos naturales y 

coherentes con enfoques de sostenibilidad ambiental. 

Tabla 6. Biodegradabilidad de películas expuestas al aire, agua y tierra en un rango de 28 días 
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CONCLUSIONES 

El estudio confirmó la viabilidad técnica de producir biopelículas biodegradables a partir de harina de 

cáscara de chocho (Lupinus mutabilis) y almidón de yuca (Manihot esculenta) mediante casting, 

valorizando subproductos agroindustriales de origen local. La formulación influyó significativamente 

en la estructura y desempeño del material, evidenciándose que mayores proporciones de almidón y 

menores contenidos de glicerol favorecieron la formación de redes poliméricas más compactas, con 

mayor viscosidad y menor permeabilidad al vapor de agua. 

Entre las formulaciones evaluadas, T3 presentó el mejor equilibrio entre propiedades fisicoquímicas, 

reológicas y mecánicas, mostrando una mayor eficiencia como barrera frente al vapor y al aceite, aunque 

manteniendo el carácter hidrofílico inherente a las matrices basadas en almidón, lo que explica su 

desempeño inferior al polietileno de baja densidad. Las biopelículas exhibieron propiedades mecánicas 

adecuadas para aplicaciones de baja exigencia estructural, así como mayor estabilidad en medios grasos 

que en acuosos, delimitando su campo de uso potencial. 

Finalmente, la rápida biodegradación en suelo orgánico confirma el carácter ambientalmente favorable 

de estos materiales. En conjunto, los resultados posicionan a las biopelículas desarrolladas, 

particularmente la formulación T3, como una alternativa biodegradable viable para aplicaciones de 
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contacto indirecto con alimentos, como separadores entre láminas de queso mozzarella, contribuyendo 

a enfoques de economía circular y abriendo oportunidades para optimizar sus propiedades de barrera en 

estudios futuros. 
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