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ABSTRACT 

The Machine or Deep Learning classification techniques use several performance evaluations 

measures. The kappa index is a highly undervalued measure regardless of its reliability in 

problems with unbalanced classes. On the other hand, Bayesian methods generate great 

contributions to statistics, adding uncertainty to the probabilistic model that allows estimating 

parameters with better adjustments. This research offers an innovative alternative for 

researchers by designing a free access library in the RStudio environment that evaluates classifiers 

through a measure of Bayesian-frequentist agreement. It uses three Bayesian models (Dirichlet, 

Multinomial-Dirichlet and Beta) with the Markov Monte Carlo chain method. The library was 

applied to the classification of leukemic cells at the Hospital Clínic (Barcelona), demonstrating its 

effectiveness in using the Bayesian kappa index for unbalanced data in relation to other 

measures, as well as the robustness and sensitivity of the design. For teaching use, the library has 

an additional function that simulates classifiers through a multinomial distribution, allowing them 

to be evaluated. 
 

Keywords: Markov chains Monte Carlo; Bayesian inference; kappa index; Bayes Theorem; 

Decision Theory. 
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Método de concordancia bayesiana y su aplicación en problemas 

de clasificación multiclase con categorías desequilibradas 
 

RESUMEN 

Las técnicas de clasificación Machine o Deep Learning utilizan varias medidas de evaluación del 

rendimiento. La índice kappa es una medida muy infravalorada independientemente de su 

fiabilidad en problemas con clases desequilibradas. Por otro lado, los métodos bayesianos 

generan grandes aportes a la estadística, agregando incertidumbre al modelo probabilístico que 

permite estimar parámetros con mejores ajustes. Esta investigación ofrece una alternativa 

innovadora para los investigadores al diseñar una biblioteca de libre acceso en el entorno RStudio 

que evalúa clasificadores a través de una medida de concordancia bayesiana-frecuentista. Utiliza 

tres modelos Bayesianos (Dirichlet, Multinomial-Dirichlet y Beta) con el método de cadena 

Markov Monte Carlo. La biblioteca se aplicó a la clasificación de células leucémicas en el Hospital 

Clínic (Barcelona), demostrando su eficacia en el uso del índice bayesiano kappa para datos 

desequilibrados en relación con otras medidas, así como la robustez y sensibilidad del diseño. 

Para uso docente, la biblioteca cuenta con una función adicional que simula clasificadores a través 

de una distribución multinomial, lo que permite evaluarlos. 

 

Palabras clave: cadenas de markov monte carlo; inferencia bayesiana; indice kappa; teorema de 

bayes; teoría de la decisión. 
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1. INTRODUCTION 

Currently, multiclass classification problems are essentially focused on the development 

and continuous improvement of machine learning algorithms applied to large volumes of 

data (Maxwell et al., 2018). However, the efficiency of these classifiers is affected by the 

continuous occurrence of cases with categories significantly less represented than others 

(unbalanced). This has promoted techniques that reduce the distance in relation to 

proportions between classes, such as the algorithm Adaboost and others. In the same 

way, these alternative solutions still generate a crossroad for the research with very few 

options when evaluating classifiers (Shuo & Xin, 2012). Making accuracy the most widely 

used discriminatory measure when comparing observers or classification algorithms. In 

conceptual terms, the accuracy represent an overall measure of how close the result is 

with respect to a reference (Westgard, 2008). 

An alternative is the Cohen's proposal with the kappa index as a measure of the 

concordance analysis between two human observers or classifiers. It offers a reliable 

comparison for the unbalanced multiclass case to know which is the best or worst 

classifier through the agreement observed, corrected by random effects that present 

susceptibility to biased classes. It is applicable to all areas, especially in medical areas such 

as the case of diagnosis and interpretation of findings related to examinations. Kappa 

formulation relates to the agreement observed as the number of elements correctly 

classified and what would be expected by chance to the instances of each class together 

with the elements that the observer or classifier agreed with the absolute truth (McHugh, 

2012). The kappa index is taken as a parameter of reliability (accuracy) in cases where the 

absolute truth is known (gold standard). Otherwise, its validity is treated under the 

sensitivity and specificity  (Brennan & Prediger, 1981). 

Based on frequentist theory, the kappa index uses the information of a sample, based on 

the probability that an event occurs in relation to the pattern observed so far. However, 

the appearance of the Bayesian method, which introduces information such as the 

degree of belief that is given to an event through previous knowledge, expectations, 

experience of the researcher and others, make this alternative approach highly 

promising. 
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The Bayesian inference assumes the parameter 𝜃 as a random variable under a certain 

distribution 𝑓(𝜃), computed through the product of a prior distribution 𝑃(𝜃) by the 

probabilistic model (Likelihood), which describes the prior knowledge of the variable of 

interest contained in the a posteriori distribution 𝜋(𝜃|𝑥). The estimation of the desired 

value is a decision problem that uses the Bayes Theorem, allowing to achieve solid and 

robust results. 

This paper focuses on the analysis of agreement for the case of unbalanced classes using 

Cohen's kappa index, using Bayesian methods, showing robustness and effectiveness 

when making specific calculations according to observers or classifiers. The specific 

objective is the design of the KFreqBay library in RStudio, which allows concordance 

analysis (kappa index), applicable to multiclass data with unbalanced categories. The 

library includes both the frequentist and Bayesian method with Markov Monte Carlo 

chains (MCMC), which can simulate a gold standard and classifiers with multinomial 

distribution or work with a set of data preset by the user. Three Bayesian models are 

applied: two Dirichlet distributions, one Dirichlet mixture with one Multinomial, and 

finally the use of two Beta distributions. They allow to effectively estimate the kappa 

index.  

It is important to emphasize that the library developed is unique at the level of the R 

software, considering that it merges the two methods (frequentist and Bayesian) in the 

evaluation of classifiers. The user does not need the tedious job of installing several 

additional libraries. The library presents an additional report and relevant images in pdf 

format with the basic and necessary statistics of each pair of existing classifiers in the 

database, thus reducing working time of researchers when issuing a decision based on 

the best or worst observer or classifier algorithm. 

The library was validated in two ways: 1) applied to a set of values obtained by simulation; 

and 2) applied to the classification results of an unbalanced database of digital 

microscope images of leukemic cells from peripheral blood of patients of the Hospital 

Clinic (Barcelona - Spain).  Classifications were performed using machine learning 

techniques such as Linear Discriminant Analysis, Support Vector Machine and Random 

Forest. 
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2. THEORETICAL BACKGROUND 

2.1 Concordance in categorical data 

The concordance can be defined as the analysis that allows to measure the degree of 

agreement between two or more classifiers or observers, determining to what extent 

their results coincide in relation to the same phenomenon (Fleiss et al., 2003). 

The Cohen kappa index is used in dichotomous cases and constitutes the observed 

agreement corrected for the effects of chance, proposing a standardized measure 

between [-1, 1]. It is formulated from the contingency table or well-known as the 

confusion matrix, which represents the frequency of hits and disagreements between 

methods for each category analyzed (See Table 1). 

Table 1. Table of frequencies - dichotomous variables 

O
B

SE
R

V
ER

 2
 

 OBSERVER 1 

 POSITIVE NEGATIVE TOTAL 

POSITIVE f11 f10 F1T 

NEGATIVE f01 f00 F0T 

TOTAL f1T f0T N 

 The most common agreement measures are (Borja, 2019): 

 Index Kappa:                                      𝑘 =
𝑃𝑜−𝑃𝑒

1−𝑃𝑒
 

where: 

Po = Proportion of observed agreement. 

𝑃𝑜 =  
𝑓11 + 𝑓00

𝑁
 

Pe = Proportion of expected agreement by chance (product of marginal frequencies). 

 

𝑃𝑒 =  (
𝐹1𝑇

𝑁
) ∗ (

𝑓1𝑇

𝑁
) + (

𝐹0𝑇

𝑁
) ∗ (

𝑓0𝑇

𝑁
) =  

𝐹1𝑇∗𝑓1𝑇 + 𝐹0𝑇∗𝑓0𝑇

𝑁2
 

 Classification error or average error. - Proportion of misclassified cases. 

 

𝑓10+𝑓01

𝑁
 

 Positive True or sensitive. - Proportion of positive cases well classified. 

𝑓11

𝑓11 + 𝑓01
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  Negative True or specificity. - Proportion of well-ranked negative cases. 

𝑓00

𝑓00 + 𝑓10
 

  False Positive. - Proportion of misclassified positive cases (Type I error). 

𝑓10

𝑓10 + 𝑓00
= 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

  False Negative. - Proportion of badly classified negative cases (Type II error). 

𝑓01

𝑓01 + 𝑓11
 

  Accuracy. - It indicates the degree of reproducibility of responses between 

observers. 

𝑓11 + 𝑓00

𝑁
 

 Confidence interval of the kappa coefficient (95%). - Corresponds to kappa ± the 

approximate standard error. 

𝐶𝐼 = 𝑘 ± 𝑧1−𝛼/2√
𝑃𝑜(1 − 𝑃𝑜)

𝑁(1 − 𝑃𝑒)2
 

 McNemar test. - Determines whether or not there is a systematic difference 

between two observers. 

𝑧2 =
𝑑2

𝑉𝑎𝑟(𝑑)
=  

(𝑓10 − 𝑓01)2

𝑓10 + 𝑓01
 

The value of the agreement 𝑘 increases while the classes are distributed asymmetrically 

by the observers. Its effect is contrary to the measure that increases the number of 

classes and even more if they are biased, showing great sensitivity to unbalanced cases 

(Watson & Petrie, 2010). For the assessment of the degree of agreement, the proposal 

of Landis & Koch (1977) is used, assuming that the agreement is exactly what was 

expected by chance in the case of having  𝑘 = 0 (see Table 2).  
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Table 2. Valuation table of kappa index 

Kappa Degree of agreement 

< 0 Without agreement (less than expected by chance) 

(0 – 0.2] Insignificant. 

(0.2 – 0.4] Low 

(0.4 – 0.6]  Moderate 

(0.6 – 0.8]  Good 

(0.8 – 1] Very good 

 

In cases of comparison of more than two evaluators (multinomial), the main measure of 

agreement is the Fleiss kappa index. It represents the corrected observed agreement 

between classifiers in the case where all the evaluators take a random result (Garabedian 

et al., 2017). It is formulated as: 

 

𝑘 = 1 −  
𝑛𝑚2 − ∑ ∑ 𝑥𝑖𝑗

2𝑟
𝑗=1

𝑛
𝑖=1

𝑛𝑚(𝑚 − 1) ∑ �̅�𝑗�̅�𝑗
𝑟
𝑗=1

 

where: 

 r= number of categories; p = proportion of positive agreements; q= proportion of 

negative agreements. 

 n= number of samples; m = the number of trials of each evaluator for each case.     

 𝑥𝑖𝑗 = the number of observers who assign the i-th subject to the j-th category. 

A hypothetical example in the dichotomous case may be the need to know if a new image 

processing equipment, which allows detecting lung cancer more economically and 

quickly, can replace the old device (gold standard). For this, 900 images have been 

analyzed with the two teams, obtaining the following results (see Table 3): 

 

Table 3. Results of the illustrative example 

EQ
U

IP
M

EN
T 

 2
 

 EQUIPMENT 1 

 POSITIVE NEGATIVE TOTAL 

POSITIVE 59 12 71 

NEGATIVE 4 825 829 

TOTAL 63 837 900 
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Applying the equations (2.1, 2.5, 2.6, 2.7, 2.8, 2.9 and 2.10) we have: 

Kappa: 𝑘 =  
0.982−0.8621

1−0.8621
=0.8712 ;     Confidence interval: 𝐶𝐼 = [0.841,0927] 

Sensitivity: 
59

59+4
 =0.93    ;      Specificity: 

825

825+12
= 0.98;    Accuracy: 

59+825

900
=0.982 

The results show that the new equipment has a high accuracy. However, taking into 

account that we work with unbalanced classes, we observe the kappa index where we 

can assess as a very good agreement between two devices (87.12%), correcting the effect 

of chance (86.21%). It indicates that there is greater accuracy when the team gives 

negative the existence of lung cancer (98%), more than in a positive response (93%). This 

concludes that it is an excellent option to replace the old equipment. 

2.2 Probability distributions 

This section presents a summary of the main probability distributions related to 

categorical variables in the Bayesian environment. 

Multinomial Distribution 

The multinomial distribution (Sheldom, 2014) is a generalization of the binomial for a 

multinomial random variable = 𝑥1,𝑥2,….𝑥𝑘 , with 𝑘  excluding events 𝑆1, 𝑆2 … . 𝑆𝑘,  

respective probabilities 𝑝1, 𝑝2 … . 𝑝𝑘 : 

𝑃(𝑆1) = 𝑝1 ,  𝑃(𝑆2) = 𝑝2 . . . . . 𝑃(𝑆𝑘) = 𝑝𝑘    ,  ∴       , ∑ 𝑃(𝑆𝑖) = 1𝑘
𝑖=1  

The probability that the event 𝑆1 … . 𝑆𝑘 happens 𝑅1 … … 𝑅𝑘 times, successively forming a 

partition of the sample space  Ω, is called multinomial distribution and its mass function 

is: 

𝑓(𝑥1, 𝑥2 … 𝑥𝑘) = 𝑃[(𝑆1 = 𝑅1) ∩ (𝑆1 = 𝑅2) ∩ … .∩ (𝑆𝑘 = 𝑅𝑘)]

=  
𝑛!

𝑥1! 𝑥2! … . . 𝑥𝑘!
𝑝1

𝑥1𝑝2
𝑥2 … . 𝑝𝑘

𝑥𝑘 

where: 

 ∑ 𝑅𝑖 = 𝑛𝑘
𝑖=1       

 For k=2 it is reduced to a binomial distribution.  

Beta Distribution 

It is widely used in continuous variables with restrictions in a range of length (0.1), and 

the most used in Bayesian inference as a priori distribution, due to its good adjustment 

to a wide variety of empirical distributions (Gupta & Nadarajah, 2004). 

In the beta distribution 𝑋~𝐵𝑒𝑡𝑎(𝛼, 𝛽)its density function is: 
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𝑓(𝑥) =  
Γ(𝛼 + 𝛽)

Γ(𝛼) Γ(𝛽)
 𝑥𝛼−1(1 − 𝑥)𝛽−1 

where: 

 Γ is the gamma function. 

 0 > 𝑥 < 1    ;              𝛼, 𝛽 > 0.  

 𝛼 y 𝛽 are profile parameters. 

 It is asymmetric if = 𝛽 , with 𝛼 < 𝛽  have positive asymmetry and 𝛼 > 𝛽 negative 

asymmetry. 

 If 𝛼 = 𝛽 = 1 then 𝑋~𝑈(0,1). 

Dirichlet distribution 

This distribution is one of the most used within Bayesian inference as a priori distribution 

representing uncertainty in results of categorical and multinomial distributions (Blei, 

Nigle, & Jordan, 2003). It is the multivariate generalization of the beta distribution (k = 2) 

and of a continuous multivariate family. Its density function is: 

 

𝑓(𝑋, 𝛼) =  
1

𝐵𝑒𝑡𝑎(𝛼)
 ∏ 𝑥𝑖

𝛼𝑖−1

𝑘

𝑖=1

                                   𝐵𝑒𝑡𝑎(𝛼) =  
∏ Γ(𝛼𝑖)

𝑘
𝑖=1

Γ(∑ 𝛼𝑖)
𝑘
𝑖=1

 

𝑓(𝑋, 𝛼) =  
Γ(∑ 𝛼𝑖)

𝑘
𝑖=1

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

 ∏ 𝑥𝑖
𝛼𝑖−1

𝑘

𝑖=1

   

 

where: 

 𝑥1, 𝑥2, 𝑥3 … . 𝑥𝑘 > 0 ;    ∑ 𝑥𝑖
𝑘
𝑖=1 = 1  for all 𝑖 𝜖 [1, 𝑘] 

 Probability of each category=  
𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

   ;      𝑘 = number of categories.              

 𝛼1, 𝛼2, 𝛼3 … . 𝛼𝑘 > 0 

  

(2.15) 
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2.3 Bayesian inference 

It is a statistical method that allows obtaining a more precise prediction of a parameter 

𝜃 of interest (posteriori), adding previous information of the event (priori) to the 

probabilistic model (likelihood). The Bayesian inference is characterized by assuming 𝜃 as 

a random variable under a certain distribution 𝑓(𝜃). The estimation of the desired value 

is a decision problem that uses the Bayes Theorem, allowing to achieve solid and robust 

results. This type of inference allows introduce uncertainty into the data and regulate 

predictions (Shridhar et al., 2019), adjusting the parameters of the distribution in the 

continuous case or by depending on the prevalence of the classes in the categorical case. 

It is very useful for unbalanced multiclass cases (Sanjib et al., 2000). 

 

2.3.1 Decision theory 

It is a process based on established criteria that allows responding with the highest 

reliability to an observer who faces a decision problem in an environment of uncertainty. 

It is defined as a quatrain (𝔻, 𝔼, ℂ, ≻), which starts with a problem that comprises a set 

of decisions𝔻 =  {𝐷1, 𝐷2 … 𝐷𝑘}, associated with a set of relevant uncertain events 𝐸𝑘 =

 {𝐸𝑘1, 𝐸𝑘2 … … 𝐸𝑘𝑖}  ⊂ 𝔼 . Each event has a consequence ℂ, which if there is more than 

one the order relation is used ≻, which determines which is the most appropriate 

(Laurence & Pascal, 2009) (see Figure 1). 

Figure 1: Decision tree 

 

 

 

PROBLEM

Decision 1

Event 1 Consequence

Event i Consequence

order 
relation

Decision 2

Event 1 Consequence

Event i Consequence

order 
relation

Decision k

Event 1 Consequence

Event i Consequence

order 
relation
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2.3.2 Bayes theorem 

Fulfilling the assumptions of disjoint and exhaustive events, Bayes proposes the following 

theorem that presents the probability of a random event 𝑋 =  𝑥1, 𝑥2, … . . 𝑥𝑛 mutually 

exclusive given 𝑌 in terms of the conditional probability of the event 𝑌 given 𝑋 and the 

marginal distribution of 𝑋 (Bradley 2013; Press, 2009):  

𝑃(𝑥𝑘|𝑌) =  
𝑃(𝑌|𝑥𝑘)𝑃(𝑥𝑘)

∑ 𝑃(𝑥𝑖)𝑃(𝑌|𝑥𝑖)
𝑘
𝑖=1

   ; 𝑘 = 1,2. . 𝑛 

where 𝑃(𝑥𝑘|𝑌) = a posteriori probability, 𝑃(𝑌|𝑥𝑘) = conditional probability, 𝑃(𝑥𝑘)= a 

priori probability and ∑ 𝑃(𝑥𝑖)𝑃(𝑌|𝑥𝑖)
𝑘
𝑖=1 = total probability. 

In a simpler and concise way, it can be stated: 

 

𝐴 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗  𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

The assigned a priori distribution can be of three types: informative if it incorporates 

information from previous analyzes, not informative if it is constructed based on 

subjective considerations and finally of structural type in the case that it incorporates 

information on relationships between parameters (D`Agostini, 2003). 

The calculation of a posteriori probability starting from a priori generates multiple 

numerical difficulties that can trigger illogical results and with great complexity in their 

interpretation. However, this shortcoming can be covered by working with conjugated 

distributions that comply with the following property: 

A family 𝒫 of a prior distributions on 𝑋 is said to be conjugated for sampling if: for any 

prior in 𝒫, the corresponding posteriori also belongs to 𝒫 (Cristóbal, 2000). 

The Table 4 presents different mixtures of conjugated families. 
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Table 4. Conjugated families (Cristóbal, 2000). 

 

2.3.3 Markov Chains Monte Carlo 

Markov Chains describe a discrete stochastic process that evolves probabilistically over 

time (Hillier & Lieberman, 2010), where, the probability of a subsequent event 𝑥𝑛+1 

depends on the immediately preceding event 𝑥𝑛 (markovian property). Generating a 

short memory effect in the chains that allow conditioning future probabilities: 

𝑃(𝑥𝑛+1 = 𝑥𝑛+1|𝑥𝑛 = 𝑥𝑛) 

Monte Carlo simulation is defined as the way to estimate a fixed parameter through the 

repeated generation of random numbers (Chib et al., 2002).  

  Monte Carlo Markov Chains (MCMC) are defined as a simulation method that allows 

generate samples of the distribution afterwards, estimating quantities or parameters of 

interest through random sampling in a probabilistic space. MCMC are used in Bayesian 

inference to solve the difficult task of calculating the a posteriori probability of the Bayes 

Theorem, in cases with complex distributions. MCMC perform a series of repetitions of 𝑛 

points of the M-dimensional space through a random number generator, recognizing the 

behavior of the system (Lebreton et al., 2004). Calculations can be developed through 

several algorithms, the most common being Gibbs sampling, which is considered as a 

particular case of the Hasting Metropolis. 

 

Priori Likelihood Posteriori Non-informative Prior parameter 

Beta  Bernoulli Beta 
𝛼 =

1

2
 , 𝛽 =

1

2
 

Dirichlet Multinomial Dirichlet 
𝛼𝑖 =

1

2
; (𝑖 = 1 … 𝑚) 

Multinomial  Dirichlet Beta 
𝛼 =

1

2
 , 𝛽 =

1

2
 

Gamma Poisson Gamma 
𝑎 = 0 ;    𝑝 =

1

2
 

Normal Normal Normal 𝜎0 → ∞ 

Gamma Normal Gamma 𝑎 = 0 ;    𝑝 = 0 

Beta  Binomial Beta 
𝛼 =

1

2
 , 𝛽 =

1

2
 

Binomial  Binomial Beta 
𝛼 =

1

2
 , 𝛽 =

1

2
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The algorithm has a burn-in phase, which is the process that accelerates the convergence 

of the chain by eliminating points that are outside the contour of the stationary process, 

due to its low probability when starting the algorithm. For the diagnosis of convergence 

of one or more Markov chains to the estimated value, Gelman Rubin scale reduction 

factors are commonly used to compare variations within and between the chains. Figure 

2 represents a two-dimensional MCMC algorithm. 

Figure 2. Two-dimensional MCMC algorithm (Ford, 2015). 

 

3. DEVELOPMENT OF THE LIBRARY  

The motivation for the library is to help solve common real-life problems in relation to 

multiclass classification with unbalanced categories due to the continuous development 

of new machine learning algorithms. Focused on the methods of concordance with the 

application of statistical inference and the punctual estimation of the kappa index and 

other general statistics, the library allows a robust and efficient concordance analysis. It 

is applicable to data with dichotomous and politomic variables with unbalanced 

categories using the Frequentist and Bayesian method using Monte Carlo Markov chains 

(MCMC), either by creating a standard gold and classifiers with multinomial distribution 

by simulation or through a set of preset data. The KfreqBay library has a wide range of 

use either for research, educational or other applications, in general related to the 

evaluation of unbalanced multiclass classifiers based on concordance analysis, allowing 

both frequent and Bayesian perspectives in a robust, efficient way and fast. 

In practice, Bayesian inference was implemented to estimate the Cohen's kappa index, 

by designing a library in the R language, obtaining as a result a frequentist and Bayesian 

concordance analysis, very effective in the unbalanced multiclass case.  
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The software JAGS (Just Another Gibbs Sampler) linked to the integrated development 

environment RStudio with the rjags library, made it possible to analyze Bayesian 

hierarchical models by applying Monte Carlo Markov Chains using the Gibbs sampling 

algorithm. We worked with the Cohen kappa index comparing several classifiers in pairs, 

because Fleiss multinomial kappa can sometimes return low values even when the 

agreement is really high (Powers, 2012). 

A number of primary and secondary functions were programmed that, in the first 

instance, convert the input data into the appropriate format for the respective 

calculation. The frequentist analysis was made by extracting the general statistics, and a 

descriptive graphical analysis of the proportion of the classes was obtained. Three 

Bayesian models were developed that estimate the parameter of interest, demonstrating 

robustness and sensitivity of the proposed model with the significant contribution of the 

chosen distributions for the likelihood. The library allows to add information about the 

prevalence of the classes in the form of probability at the moment of performing the 

Bayesian calculation. 

For educational and experimental purposes, we have the option of simulating the 

response of a classifier through a multinomial distribution, building the gold standard and 

several observers according to the characteristics pre-established by the user. 

Consequently, the analysis of frequentist and Bayesian concordance is carried out, 

simultaneously. 

3.1 Bayesian models 

In order to achieve logical and interpretable results, the Bayesian models were based on 

the mixture of conjugated families in Table 4 proposed by Cristóbal (2000). It was 

designed in text format using the function textconnection (model) for its analysis within 

the JAGS environment. 

For the three models, the following likelihood function was proposed: 

ℒ = (
Γ(𝛼 + 𝛽)

Γ(𝛼) Γ(𝛽)
 𝑥𝛼−1(1 − 𝑥)𝛽−1)

𝑥

(1 −
Γ(𝛼 + 𝛽)

Γ(𝛼) Γ(𝛽)
 𝑥𝛼−1(1 − 𝑥)𝛽−1)

1−𝑥

 

 

This is formulated starting from a Bernoulli distribution (𝑝) =  𝑝𝑥(1 − 𝑝)1−𝑥 , with 

𝑝~𝐵𝑒𝑡𝑎(1,1) =
Γ(𝛼+𝛽)

Γ(𝛼) Γ(𝛽)
 𝑥𝛼−1(1 − 𝑥)𝛽−1  ≈ 𝑈𝑛𝑖 (0,1), considering that we work with 

categorical variables in the dichotomous case and with values generally between (0,1).  
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For the first model we used a Dirichlet distribution: 

𝑓(𝑋, 𝛼) =  
Γ(∑ 𝛼𝑖)

𝑘
𝑖=1

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

 ∏ 𝑥𝑖
𝛼𝑖−1

𝑘

𝑖=1

 

Applying the Bayes theorem we may write: 

𝜋(𝑋|𝑌) = (
Γ(𝛼 + 𝛽)

Γ(𝛼) Γ(𝛽)
 𝑥𝛼−1(1 − 𝑥)𝛽−1)

𝑥

(1

−
Γ(𝛼 + 𝛽)

Γ(𝛼) Γ(𝛽)
 𝑥𝛼−1(1 − 𝑥)𝛽−1)

1−𝑥

  
Γ(∑ 𝛼𝑖)

𝑘
𝑖=1

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

 ∏ 𝑥𝑖
𝛼𝑖−1

𝑘

𝑖=1

 

Regarding the programming of the models, only the first will be detailed. Using equation 

(2.1) of the kappa index, the following algorithm was proposed: 

 

#Programming in R 

Model <- "model { 

      # Verosimilitud 

      kappa <- (p_agreement - expected_agreement) / (1 -expected_agreement) 

      expected_agreement <- sum(p1 * p2) 

      for (i in 1:n_ratings) { 

      rater1[i] ~ dcat(p1) 

      rater2[i] ~ dcat(p2) 

      agreement[i] ~ dbern(p_agreement) } 

      #  Parámetros priori 

      p1 ~ ddirch(alpha) 

      p2 ~ ddirch(alpha) 

      p_agreement ~ dbeta(1, 1) 

      alpha <- prob }" 

 

For the second model a function is proposed that represents the mixture of a Dirichlet - 

Multinomial distributions, described and developed by Monleón-Getino (2018) and 

Monleón-Getino et al. (2019):   

𝑝𝑖(𝑥) =
(N!)Γ(∑ 𝛼𝑖

𝑘
𝑖 )

Γ(n + ∑ 𝛼𝑖
𝑘
𝑖 )

∏ (
Γ(∑ 𝑥𝑖 + 𝛼𝑖

𝑘
𝑖 )

(𝑥𝑖!)Γ(𝛼𝑖)
)

𝑘

𝑖
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Therefore, by using the Bayes theorem, we have: 

𝜋(𝑋|𝑌) = ∏ (
Γ(𝛼 + 𝛽)

Γ(𝛼) Γ(𝛽)
 𝑥𝑖

𝛼−1(1 − 𝑥𝑖)𝛽−1)

𝑥𝑖

(1

𝑛

𝑖=1

−
Γ(𝛼 + 𝛽)

Γ(𝛼) Γ(𝛽)
 𝑥𝑖

𝛼−1(1 − 𝑥𝑖)𝛽−1)

1−𝑥𝑖

 

∗   
(N!)Γ(∑ 𝛼𝑖

𝑘
𝑖 )

Γ(n + ∑ 𝛼𝑖
𝑘
𝑖 )

∏ (
Γ(∑ 𝑥𝑖 + 𝛼𝑖

𝑘
𝑖 )

(𝑥𝑖!)Γ(𝛼𝑖)
)

𝑘

𝑖

 

 For the third model, we worked with two prior Beta distributions with density function:  

𝑓(𝑥) =  
Γ(𝛼 + 𝛽)

Γ(𝛼) Γ(𝛽)
 𝑥𝛼−1(1 − 𝑥)𝛽−1 

Then,  

𝜋(𝑋|𝑌) = (
Γ(𝛼 + 𝛽)

Γ(𝛼) Γ(𝛽)
 𝑥𝛼−1(1 − 𝑥)𝛽−1)

𝑥

(1 −
Γ(𝛼 + 𝛽)

Γ(𝛼) Γ(𝛽)
 𝑥𝛼−1(1 − 𝑥)𝛽−1)

1−𝑥

 

∗   
Γ(𝛼 + 𝛽)

Γ(𝛼) Γ(𝛽)
 𝑥𝛼−1(1 − 𝑥)𝛽−1 

Therefore, it was assumed that the responses of each classifier follow a previous 

distribution (beliefs), with prevalence introduced by the parameters of the priori. 

Together with our probabilistic model, they adjust the kappa estimate to different 

realities. 

3.2 Library in the RStudio environment 

The library created in R language has the name of KfreqBay, is free access, in zip format, 

installable in RStudio and downloadable from the address: 

https://github.com/RicardoBorja. It has the function K_Freq_Bay that allows running a 

frequentist and Bayesian concordance analysis with either a specific database or by 

simulating a gold standard and observers. It also includes a help menu (? K_Freq_Bay), 

which allows the user to know information about the parameters and illustrative 

examples that familiarize them with the process.  

The K_Freq_Bay function has default values, with accessibility to changes according to 

the needs of the user. The function has the following form, where the arguments used 

are included: 

K_Freq_Bay(data=FALSE,setseed=1234,num_mult=1000,burn_in=10000,chains=2,updat=

1000,thin_=1,iter_thin_=20000,models=1, DIC_=0) 
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The designed library avoids the user the tedious activity of installing additional functions 

that a package requires for its proper functioning, automatically installing or activating 

everything necessary for the optimal execution of K_freq_Bay. In addition, it has a friendly 

environment that guides the process step by step, in the two cases of simulation or the 

use of a specific database. The required information is entered through the keyboard in 

numerical form. 

In the case of simulation of a gold standard and classifiers, the process starts with 

previous information, followed by two options to create the sample: enter the size of the 

categories or their probabilities (see Figure3). 

Figure 3: Generation of data through the number of categories and sample size  

 

Consequently, the number of observers and the desired precision are chosen. Once the 

database is created by simulation, the frequentist and Bayesian analysis is carried out, 

requesting if the user wishes that the prevalence of the a priori distribution is 

equiprobable or not. Figure 4 shows the case of information addition. 

Figure 4. Bayesian analysis including a prior information  

 

 

 

 

 

 

 

For the case of analyzing a given database, the previous information is known and the 

user goes directly to the option of Figure 4. 
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The library in any of the two cases presents as outputs a descriptive graph of the 

proportion of the classes, density graphs of the frequentist versus Bayesian kappa index, 

graphs of convergence diagnosis of Gelman Rubin, self-correlation, stationarity and final 

report of statistical values frequentist and Bayesian generals. They are generated for all 

possible pairs of classifiers (with the gold standard and with each other), with pdf format 

in the work folder. In addition, in the environment RStudio returns a list with: 

1. Report of Gelman Rubin, Raftery Lewis and Cramer Von Mises (Methods to assessing 

Markov Chain Convergence). 

2. Final report of the general statistics. 

3. Final report in case of sample size changes. 

In the case of simulation, at the end of the process the user has the option of changing 

the sample size while maintaining the same probabilities in the classes. This allows to 

know the different variations according to the increase or decrease of data. 

A more detailed explanation is available in the thesis project through the link: 

https://upcommons.upc.edu/handle/2117/127344. 

4. RESULTS 

We evaluated the accuracy and sensitivity in the estimate of the Bayesian kappa index 

with the KFreqBay library, presenting different use cases. Three observers were simulated 

with a gold standard and five categories, under two scenarios: the first with frequencies 

of 200, 300, 400, 20, 1; in the second, the probability of each class was retained and the 

sample size was changed from 921 to 9000.  

In the Bayesian part of each process, tests were carried out assuming equiprobability and 

with prevalence of 0.15, 0.40, 0.05, 0.20 and 0.20 in the classes for a prior distribution. 

Tables 5 and 6 summarize the results obtained in the estimation of the kappa index only 

of the gold standard compared to the first classifier. Final reports and graphs of all pairs 

of observers can be observed at: https://github.com/RicardoBorja. 

Table 5. Results frequentist method - validation process 

FREQUENTIST METHOD 

SAMPLE 

SIZE 

PAIR OF 

OBSER. 

KAPPA LOWER KAPPA KAPPA UPPER ACCURACY 

921 1-2 0.8622 0.8873 0.9124 0.9251 

9000 1-2 0.8720 0.8802 0.8885 0.92 

 

https://github.com/RicardoBorja
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Table 6. Bayesian method results with three models - validation process 

 

As observed in Tables 5 and 6, the reports generated by the three models were analyzed 

by checking the robustness and sensitivity of the proposed distributions within the 

probabilistic model and a prior probability in unbalanced multiclass cases. The Dirichlet-

Dirichlet model presented a mesokurtic density with greater stability in both sample sizes, 

whereas the Dirichlet - Multinomial was leptokurtic in the equiprobable case and totally 

opposed when entering information. Finally, the Beta - Beta model presented a very 

narrow credibility interval that makes it very restrictive. In all cases, the chains converge 

to the estimated value with good precision in relation to the frequentist method. 

However, the Dirichlet - Dirichlet distribution is considered the most optimal and stable 

distribution for calculating the Bayesian kappa index. 

 

BAYESIAN METHOD 

SAMPLE 

SIZE 
MODEL 

PAIR OF 

OBSER. 

KAPPA 

LOWER 

KAPPA KAPPA 

UPPER 

P-VALUE 

2 CHAINS 

EQUIPROBABL

E CATEGORIES 

921 DI-DI 1-2 0.8591 0.8867 0.9106 (0.37;0.13

) 

YES 

921 DI-DI 1-2 0.8590 0.8864 0.9104 (0.33;0.41

) 

NOT 

921 DI-MUL 1-2 0.8030 0.9084 0.9339 (0.64;0.30

) 

YES 

921 DI-MUL 1-2 -2.7271 0.9120 0.9372 (0.60;0.72

) 

NOT 

921 BE-BE 1-2 0.9062 0.9244 0.9404 (0.27;0.05

) 

YES 

921 BE-BE 1-2 0.9061 0.9245 0.9404 (0.43;0.96

) 

NOT 

9000 DI-DI 1-2 0.8716 0.8802 0.8884 (0.95;0.89

) 

YES 

9000 DI-DI 1-2 0.8718 0.8802 0.8884 (0.34;0.70

) 

NOT 

9000 DI-MUL 1-2 0.7984 0.9047 0.9215 (0.20;0.39

) 

YES 

9000 DI-MUL 1-2 -2.7848 0.9108 0.9239 (0.84;0.88

) 

NOT 

9000 BE - BE 1-2 0.9142 0.9199 0.9254 (0.17;0.56

) 

YES 

9000 BE-BE 1-2 0.9142 0.9200 0.9255 (0.11;0.09

) 

NOT 
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4.1 Application of the Bayesian concordance analysis by K_Freq_Bay to the database of 

classification of leukemic cells in peripheral blood – Hospital Clinic. 

The library was applied to the results of the automatic classification of peripheral blood 

digital images used for the initial diagnosis of leukemias and lymphomas (Boldú et al., 

2019). They were obtained by the Cellsilab group formed by researchers from the CORE 

Laboratory of the Biomedical Diagnostic Center of the Hospital Clinic of Barcelona and 

the Mathematics Department of the Technical University of Catalonia. 

The classifications were generated by three types of machine Learning algorithms (Linear 

Discriminant Analysis LDA, Support Vector Machine SVM and Random Forest RF) before 

and after the application of techniques of down – sampling and up – sampling to 

compensate for unbalanced classes. In this way six classification results were available for 

our study.  For the gold standard we worked with 4365 data distributed in four categories: 

CLR reactive cells (338), acute lymphoid leukemia LAL (521), acute myeloid leukemia LAM 

(2839) and acute myeloid leukemia promyelocytic LAM_ PROM (667) (see Figure 5). 

Figure 5. Frequency chart - gold standard  

 

 

Figure 6 shows a decision tree that expresses the problem posed, taking the following 

considerations: CLR =L1, LAL= L2, LAM=L3 Y LAM_PROM = L4, CT = The classifier gave a 

positive interpretation of the cell when it was correct, CF = The classifier gave a negative 

interpretation of the cell when it was incorrect (see Figure 6). 
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Figure 6. Decision tree – application to leukemic cells 

 

 

 

 

 

 

 

 

 

The positive and negative classification of the four cell types analyzed, applying equation 

(2.19) of the Bayes Theorem, follow the same pattern as that described below for the 

reactive cells (L1): 

𝜋(𝐿1|𝐶𝑇) =
𝑃(𝐿1)𝑃(𝐶𝑇|𝐿1)

𝑃(𝐿1)𝑃(𝐶𝑇|𝐿1) + 𝑃(𝐿2)𝑃(𝐶𝑇|𝐿2) + 𝑃(𝐿3)𝑃(𝐶𝑇|𝐿3) + 𝑃(𝐿4)𝑃(𝐶𝑇|𝐿4)
 

𝜋(𝐿1|𝐶𝐹) =
𝑃(𝐿1)𝑃(𝐶𝐹|𝐿1)

𝑃(𝐿1)𝑃(𝐶𝐹|𝐿1) + 𝑃(𝐿2)𝑃(𝐶𝐹|𝐿2) + 𝑃(𝐿3)𝑃(𝐶𝐹|𝐿3) + 𝑃(𝐿4)𝑃(𝐶𝐹|𝐿4)
 

Next, we present the results of the best classifier analyzed with the Dirichlet - Dirichlet 

model, in this case the Linear Discriminant Analysis (LDA) (see Figure 7). In addition, the 

final and graphic reports of all the pairs of classifiers are published at: 

https://github.com/RicardoBorja. 

Figure 7. Algorithm results LDA-TRUE  

 

L1 
P(CT|L1) 

P(CF|L1) 

Cells 

L2 
P(CT|L2) 

P(CF|L2) 

L3 
P(CT|L3) 

P(CF|L3) 

L4 
P(CT|L4) 

P(CF|L4) 

https://github.com/RicardoBorja


Borja-Robalino, Monleón-Getino, Rodellar 

Ciencia Latina Revista Científica Multidisciplinar, Ciudad de México, México. 

ISN 2707-2207/ISSN 2707-2215 (en línea),septiembre-octubre,2022,Volumen 6,Número 5 p 1085 

A slight increase in the credibility intervals (K Bayesian) and greater shoring in the 

posteriori kappa distribution are visualized, considering that a 95% credibility interval was 

worked on, representing the interval where there is a probability equal to 0.95 that 

contain kappa. In addition, it is observed that the two chains do not show correlation and 

converge with a burn-in of 10000.  

Two more tests were performed adding information in the a priori distribution, taking 

into account the prevalence of each leukemic cell at Hospital Clinic level (inside) and Spain 

(outside). Tables 7 and 8 summarize the results obtained in the estimation of the kappa 

index only of the gold standard compared to LDA. Final reports and graphs of all pairs of 

observers can be observed at: https://github.com/RicardoBorja. 

Table 7. Results frequentist method - application to leukemic cells LDA-TRUE. 

FREQUENTIST METHOD 

SAMPLE SIZE PAIR OF OBSER. KAPPA LOWER KAPPA KAPPA UPPER ACCURACY 

4365 1-2 0.7251 0.7444 0.7639 0.8685 

 

Table 8. Bayesian method results with prevalence of leukemic cells LDA-TRUE. 

BAYESIAN METHOD 

SAMPLE 

SIZE 
MODEL 

PAIR OF 

OBSER. 

KAPPA 

LOWER 

KAPPA KAPPA 

UPPER 

P-VALUE 

2 CHAINS 

PREVALENCE 

4365 DI-DI 1-2 0.7236 0.7444 0.7641 (0.84;0.9

4) 

NOT 

4365 DI-DI 1-2 0.7239 0.7443 0.7644 (0.97;0.1

4) 

INSIDE 

4365 DI-DI 1-2 0.7236 0.7422 0.7638 (0.97;0.7

7) 

OUTSIDE 

4365 DI-MUL 1-2 0.5451 0.8339 0.8707 (0.31;0.5

3) 

NOT 

4365 DI-MUL 1-2 -55.26 0.8264 0.8747 (0.05;0.6

7) 

INSIDE 

4365 DI-MUL 1-2 - - - - OUTSIDE 

4365 BE-BE 1-2 0.8582 0.8683 0.8782 (0.51;0.8

0) 

NO 

4365 BE-BE 1-2 0.8581 0.8683 0.8783 (0.97;0.8

0) 

INSIDE 

4365 BE-BE 1-2 0.8583 0.8683 0.8782 (0.11;0.4

1) 

OUTSIDE 

 

The study showed that the Dirichlet - Dirichlet model was the most optimal and robust in 

the estimation of the kappa index, demonstrating a high convergence value of its two 

https://github.com/RicardoBorja
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chains in all cases of prevalence, especially in the most extreme (outside – p-value = 

(0.97;0.77)), unlike the other two models. In addition, their credibility intervals become 

more leptokurtic while the prevalence is more extreme, adjusting kappa effectively for 

unbalances cases. The percentage of variation of kappa in each model is small due to the 

high amount of sample data with which we work. The best algorithm was LDA, which 

presented a good agreement in relation to the gold standard with an observed 

agreement of 86.8% and expected by chance of 48.55%; while SVM and RF had a 

moderate agreement. 

4.2 Index Kappa versus accuracy  

The KFreqBay library was applied using the Dirichlet - Dirichlet model to the algorithm 

with higher and lower accuracy (LDA and RF), in the leukemic cell database, randomly 

selecting 10%, 25%, 50%, 75% and 100% of the sample size (4365). We worked under 

three scenarios: equiprobable, prevalence of the Hospital and of Spain. Figures 8 

represent the results obtained. 

Figure 8. Kappa evolution graph and accuracy by sample size – LDA (1-2) y RF (1-6).  

 

It was confirmed that in both classifiers with high (observer: 1-2) or low precision 

(observer: 1-6) the kappa index especially Bayesian, when adding a prior information 

(Bay-in and Bay-out) shows a greater sensitivity to sample change and class proportion. 

Their credibility intervals increase in relation to the frequentist kappa by adding 

information, taking into account that in the Bayesian results in both algorithms the more 

critical the prevalence between them the credibility intervals decrease, thus improving 

the parameter estimation. However, it is evident that the accuracy is almost invariable, 
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even more so in algorithms with lower performance. It was shown that the best way to 

compare classifiers, especially with unbalanced classes, is through Bayesian concordance 

methods.  

5. CONCLUSIONS 

The kappa index is a very efficient but underutilized metric, which allows to know the 

performance of a classifier especially in the case of unbalanced multiclass problems, in 

comparison with the accuracy, which is a widely used measure but does not provide a 

complete picture of the performance of the analyzed classifiers. 

The Bayesian kappa index (BKI), that we propose, is the optimal tool to evaluate the 

degree of agreement between two observers or classifiers in the unbalanced multiclass 

case, due to the correction of the chance effect. It allows enter information of the 

prevalence within the prior distribution. The three Bayesian models implemented in this 

paper demonstrated the robustness and sensitivity of the KFreqBay library executable in 

the R environment with free access. It allows to develop a frequentist and Bayesian 

concordance analysis either with a pre-established database or through the simulation of 

a gold standard and observers through a multinomial distribution. When the sample size 

decreases and the frequencies of the classes are more extreme, the kappa index shows 

sensitivity and experiences a widening of the credibility intervals. The expected 

agreement by chance reacts inversely proportional to kappa index. 

The Bayesian concordance analysis applied in the case study of the classification of 

leukemic cells highlights the advantages and effectiveness of the method proposed with 

the designed library. In fact, the adjustments in the value of kappa under extreme 

prevalence scenarios allowed us to know the differences when evaluating a classifier 

depending on the reality to which it is exposed, in this case at the level of the Hospital 

Clinic or at the level of Spain. 
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