Chemical-Quantum Analysis Of The Anticancer Potential Of Rhodionin Present In The Plant Rhodiola Rosea Vs. Amino Acids Of The Human Body

 

Giovanny Flores Romero[1]

[email protected]

 http://orcid.org/0009-0005-5552-3241

Tecnológico Nacional de México/ IT de Acapulco (TecNM/ITA). Departamento de Ingeniería Bioquímica.

México

 

Samantha Suárez Rodríguez

[email protected]

https://orcid.org/0009-0006-9173-4801

Universidad Veracruzana (UV) Facultad de Ciencias Biológicas y Agropecuarias (FCBA)

México

Medardo Galdámez Velázquez

[email protected]

https://orcid.org/0009-0002-4762-8973

Universidad Autónoma de Chiapas (UNACH) Escuela de Ciencias Químicas sede Ocozocoautla (ECQO)

México

 

Ana Karen Pérez Pérez

[email protected]

 http://orcid.org/0009-0004-2158-4700

Universidad Autónoma de Chiapas (UNACH) Escuela de Ciencias Químicas sede Ocozocoautla (ECQO).

México

 

Alexis Torres Solano

[email protected]

https://orcid.org/0009-0004-0749-1436

Universidad Veracruzana (UV) Facultad de Ciencias Agrícolas

México

 

Manuel González Pérez

[email protected]

https://orcid.org/0000-0001-8700-2866

Universidad Tecnológica de Tecamachalco (UTTECAM)

Tecnológico Nacional de México/ITS de Tepeaca

México

 

 

ABSTRACT

Rhodiola rosea (R. rosea) extract has molecular contrast mechanisms, which have normal physiological functions. Extracts of R. rosea have anticancer potentials. Rhodiodin (RDN) is a flavonoid compound found in Rhodiola plants. The aim was to analyze the anticancer potential of rodionin present in the R. rosea plant by quantum chemistry. Hyperchem software was used as a quantum chemistry simulator. The fundamental basis of quantum calculations was the electron transfer coefficient (ETC) theory. We can see the ETCs ordered according to the quantum well. The substance lies at the bottom of the quantum well. This situation indicates that the probability of oxidative interactions occurring is very high. We found that the RDN is a potent oxidant of AAs in the human body; for this reason, it has potential as an anticancer chemotherapeutic agent.

 

Keywords: Chemical-Quantum; Anticancer potential; Rhodionin;  Rhodiola Rosea.


Análisis Químico-Cuántico del Potencial Anticancerígeno de la Rodionina Presente en la Planta Rhodiola Rosea Vs Aminoácidos del Cuerpo Humano

 

RESUMEN

Los extractos de Rhodiola rosea (R. rosea) tiene mecanismos de contraste molecular, que tienen funciones fisiológicas normales. Los extractos de R. rosea tienen potencial anticancerígeno. La rodiodina (RDN) es un compuesto flavonoide que se encuentra en las plantas de Rhodiola. El objetivo fue analizar el potencial anticancerígeno de la rodionina presente en la planta R. rosea mediante química cuántica. El software Hyperchem se utilizó como simulador de química cuántica. La base fundamental de los cálculos cuánticos fue la teoría del coeficiente de transferencia de electrones (ETC). Podemos ver las ETC ordenadas según el pozo cuántico. La sustancia se encuentra en el fondo del pozo cuántico. Esta situación indica que la probabilidad de que se produzcan interacciones oxidativas es muy alta. Encontramos que el RDN es un potente oxidante de AA en el cuerpo humano; por esta razón, tiene potencial como agente quimioterapéutico contra el cáncer.

 

Palabras clave: Química-Cuántica; Potencial anticancerígeno; Rodionina;  Rhodiola Rosea; aminoácidos del cuerpo humano.

 

 

 

 

Artículo recibido 25 julio 2023

Aceptado para publicación: 25 agosto 2023

 

 


 

INTRODUCTION

Natural compounds extracted from herbs are used to prevent or treat different diseases. Cancer is included in these diseases. In addition, these natural compounds are an alternative to drug consumption. The researchers conducted studies on plant compounds. They aimed to find substances with selective cytotoxicity in abnormal cells. Phenolic compounds are important secondary metabolites of plants. (Teodor et al., 2020); (Kwon, 2018); (Alamgir, 2018)

The plant of the genus R. (Crassulaceae) comprises approximately 96 species. R. rosea is a popular plant in traditional medical systems in the Nordic countries, Eastern Europe, and Asia. This plant has medicinal properties such as stimulating the nervous system, reducing depression, improving work performance, eliminating fatigue, and preventing altitude sickness. (T. Li & Zhang, 2008); (Petsalo et al 2006); (Khanum et al 2005a); (Panossian et al 2010b)

The researchers conducted a study on the content and location of the phenolic compounds of R. rosea. The study focused on phenylpropanoid compounds. The plant material used in the introduction experiment was obtained by the in vitro method. The researchers used the HPLC method to identify the phenolic compounds. The compounds identified were: gallic acid, rosavin, rosin, cinnamon alcohol, rhodopsin, RDN, and kaempferol. RDN is a flavonoid compound found in R. rosea plants.   (Erst et al. 2021); (Kurkin, 2013b); (ALtAntsetseG, K et al 2007)

Researchers have studied the molecular mechanisms of action of R. rosea extracts. R. rosea extracts have molecular contrast mechanisms, and these have normal physiological functions. Extracts of R. rosea have anticancer potentials. These inhibit the mTOR pathway and further reduce angiogenesis by downregulating HIF-1α/HIF-2α expression. (Y. Li et al. 2017b); (Liu et al. 2011)

Cancer is one of the leading causes of death in the world. Cancer has a prevalence of >10 million deaths annually. Current cancer treatments include surgery, radiation, and chemotherapy drugs, often killing healthy cells and producing toxicity in patients. (Zaimy et al. 2017) (Hausman, 2019); (Torre et al 2016); (Gilbertson, 2011)

 

 

MATERIAL AND METHODS

Hyperchem software was used as a quantum chemistry simulator. The fundamental basis of quantum calculations was the theory of the ETC. In tables 1-2. The parameters used in this simulation are specified.

The Plot Molecular Graph method in three dimensions was used to calculate the electrostatic potential (EP).

Finally, the ETC was calculated by dividing the band gap by the EP.

As there are too many calculations, only the tables, whisker, and box diagrams are presented in this article. If you would like more information, please contact Dr. Manuel González Pérez.

Table 1. Parameters used for quantum computing molecular orbitals-HOMO and LUMO

Parameter

Value

Parameter

Value

Total charge

0

Polarizability

Not

Spin Multiplicity

1

Geometry Optimization

algorithm

Polak-Ribiere

(Conjugate Gradient)

Spin Pairing

RHF

Termination condition RMS

gradeint of

0.1 Kcal/Amol

State Lowest Convergent Limit

0.01

Termination condition or

1000 maximum cycles

Interaction Limit

50

Termination condition or

In vacuo

Accelerate Convergence

Yes

Screen refresh period

1 cycle

Table 2. Parameters used for visualizing the map of the electrostatic potential of the molecules

Parameter

Value

Parameter

Value

Molecular Property

Property Electrostatic

Potential

Contour Grid increment

0.05

Representation

3D Mapped Isosurface

Mapped Function Options

Default

Isosurface Grid: Grid Mesh Size

Coarse

Transparency level

A criteria

Isosurface Grid: Grid

Layout

Default

Isosurface Rendering: Total charge density contour value.

0.015

Contour Grid: Starting Value

Default

Rendering Wire Mesh

 

Interpretation of the quantum well.

Figure 1 presents the quantum well of the interactions through its ETC. On the left side, the antioxidant or reducing interactions are shown, on the right side, the oxidant interactions. This well is divided into four quadrants, ordered from lowest to highest, from bottom to top. The deeper interactions in the well have greater chemical affinity and probability of occurring.

Diagrama, Esquemático

Descripción generada automáticamente

Figure 1. Quantum well. Interpretation of the interactions in the four statistical quadrants.

 


 

RESULTS AND DISCUSSION

Classic characterization

Figure 2 shows the results of the simulated characterization of H Nuclear Magnetic Resonance and the scientific name according to the UIPAC of RDN.

Diagrama

Descripción generada automáticamente

3,5,8-trihydroxy-2-(4-hydroxyphenyl)-7-((3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran

2-yl)oxy)-4H-chromen-4-one

 

Gráfico, Histograma

Descripción generada automáticamente

Figure 2. Scientific name UIPAC and Nuclear Magnetic Resonance of H. Above the molecule with its quantified protons. Below is the multiplicity diagram of protons.

 


 

Figure 3 shows the results of the simulated characterization of C13 Nuclear Magnetic Resonance.

 

 

 

Diagrama

Descripción generada automáticamente

 

3,5,8-trihydroxy-2-(4-hydroxyphenyl)-7-((3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran

2-yl)oxy)-4H-chromen-4-one

Gráfico, Histograma

Descripción generada automáticamente

 

Figure 3. C13 nuclear magnetic resonance. At the top the molecule is shown with its quantified carbons and at the bottom is the diagram in ppm.

Quantum characterization.

Figure 4 shows us the RDN molecule characterized by its different quantum concepts. This molecule presents a quantum superposition of HOMO and LUMO. This quantum property infers that it has spheres or micelles.

 

A)                 RDN. Hyperchem.

B)                 RDN. Electrostatic potential. -d = -0.105 eV/a°; +d = 0.212 eV/a°.

C)                 RDN. HOMO. -8.509754 eV.

D)                             RDN.LUMO. -0.625973 eV.Imagen que contiene interior, niño, accesorio, joven

Descripción generada automáticamente

Figure 4. Quantum characterization. A) Cyan = C; White = H; Red = O; B) Electrostatic potential; C) HOMO; D) LUMO


 

Quantum calculations.

 

BG = |HOMO-LUMO|

Eq.  1.

EP = |(-d) - (+d) |

Eq. 2.

ETC = BG/EP

Eq. 3.

 

Where:

BG = band gap. Column 6 of table 1.

EP = electrostatic potential. Column 9 of table 1.

ETC = Electron Transfer Coefficient. Column 10 of table 1.

To show a summary of 61 interactions between the RDN and the 20 AAs of the human body, we used whisker and box diagrams.

In Table 1, we can see the ETCs ordered according to the quantum well. It is observed that the RDN is at the bottom of the well. This location leads us to infer that RDN is a long-acting substance so this substance cannot be eliminated by the biological organism without complications. (González-Pérez, 2017a) (González-Pérez, 2015) (González et al 2017) (Ahuactzin et al 2018) (González-Pérez, 2017b) (González et al 2018) (Pérez et al 2019) (Olmos et al 2018) (Pacheco et al 2017)

Table 1. ETCs of pure substances AAs and RDN.

No.

Reducing

agent

Oxidizig

agent

HOMO

LUMO

BG

d-

d+

EP

ETC

21

Val

Val

-9.914

0.931

10.845

-0.131

0.109

0.240

45.188

20

Ala

Ala

-9.879

0.749

10.628

-0.124

0.132

0.256

41.515

19

Leu

Leu

-9.645

0.922

10.567

-0.126

0.130

0.256

41.279

18

Phe

Phe

-9.553

0.283

9.836

-0.126

0.127

0.253

38.879

17

Gly

Gly

-9.902

0.902

10.804

-0.137

0.159

0.296

36.500

16

Ser

Ser

-10.156

0.565

10.721

-0.108

0.198

0.306

35.037

15

Cys

Cys

-9.639

-0.236

9.403

-0.129

0.140

0.269

34.956

14

Glu

Glu

-10.374

0.438

10.812

-0.111

0.201

0.312

34.655

13

Ile

Ile

-9.872

0.972

10.844

-0.128

0.188

0.316

34.316

12

Thr

Thr

-9.896

0.832

10.728

-0.123

0.191

0.314

34.167

11

Gln

Gln

-10.023

0.755

10.778

-0.124

0.192

0.316

34.108

10

Asp

Asp

-10.370

0.420

10.790

-0.118

0.204

0.322

33.509

9

Asn

Asn

-9.929

0.644

10.573

-0.125

0.193

0.318

33.249

8

Lys

Lys

-9.521

0.943

10.463

-0.127

0.195

0.322

32.495

7

Pro

Pro

-9.447

0.792

10.238

-0.128

0.191

0.319

32.095

6

Trp

Trp

-8.299

0.133

8.431

-0.112

0.155

0.267

31.577

5

Tyr

Tyr

-9.056

0.293

9.349

-0.123

0.193

0.316

29.584

4

His

His

-9.307

0.503

9.811

-0.169

0.171

0.340

28.855

3

Met

Met

-9.062

0.145

9.207

-0.134

0.192

0.326

28.243

2

Arg

Arg

-9.176

0.558

9.734

-0.165

0.199

0.364

26.742

1

RDN

RDN

-8.510

-0.626

7.884

-0.105

0.212

0.317

24.870

 

Figure 5 shows the information in diagrams of whiskers and boxes. The upper left graph shows the reducing or antioxidant interactions, and the lower exemplary chart shows the oxidative interactions. The substance lies at the bottom of the quantum well. This action indicates that the probability of oxidative interactions occurring is very high.

Figure 5. Whisker diagrams of the CTEs of chemical-quantum interactions. The lower right diagram indicates that the interactions are highly oxidizing in nature.

 

CONCLUSIONS

Aim.  To analyze the anticancer potential of RDN present in the R. rosea plant by quantum chemistry.

Thesis. The diagrams (Figure 5) show that the probability of oxidative interactions occurring is very high. This leads us to infer that RDN is a potent oxidant of AAs in the human body, for this reason it has a potential as an anticancer chemotherapeutic agent.

Corollary. We found outside our target that the RDN is at the bottom of the well. This location leads us to infer that RDN is a long-acting substance so this substance cannot be eliminated by the biological organism without complications.

ACKNOWLEDGMENTS

To our parents, who with their example of tenacity, honesty and love guide us along the path of life.

To the Delfín program for giving us the opportunity to scientifically investigate these substances that are so important for stopping cancer.

To the Technological University of Tecamachalco for providing us with its facilities, intellectual and logistical support in general, to develop this important research.

To the Universidad Autónoma de Chiapas, Universidad Veracruzana, TecNM campus Acapulco, our alma mater.

To our teachers, unconditional guides to the progress of us, our community, and our country Mexico.

LIST OF REFERENCES

Ahuactzin-Pérez, M., Tlecuitl-Beristain, S., García-Dávila, J., Santacruz-Juárez, E., González-Pérez, M., Gutiérrez-Ruíz, M. C., & Sánchez, C. (2018). A novel biodegradation pathway of the endocrine-disruptor di (2-ethyl hexyl) phthalate by Pleurotus ostreatus based on quantum chemical investigation. Ecotoxicology and Environmental Safety, 147, 494-499.

Alamgir, A. N. M., & Alamgir, A. N. M. (2018). Secondary metabolites: Secondary metabolic products consisting of C and H; C, H, and O; N, S, and P elements; and O/N heterocycles. Therapeutic Use of Medicinal Plants and their Extracts: Volume 2. Progress in Drug Research, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-92387-1_3

ALtAntsetseG, K., Przybył, J. L., Węglarz, Z. y Geszprych, A. (2007). Contenido de compuestos biológicamente activos en materia prima de raíz de rosa (Rhodiola sp.)  de diferente derivación. Herba Pol, 53(4), 20-26.

Erst, A. A., Petruk, A. A., Zibareva, L. N. y Erst, A. S. (2021). Características morfológicas, histoquímicas y bioquímicas de la Rhodiola rosea cultivada (ecotipo de las montañas de Altai). Problemas contemporáneos de ecología, 14(6), 701–710. https://doi.org/10.1134/S1995425521060135

Gilbertson R. J. (2011). Mapeo de los orígenes del cáncer. Celda, 145(1), 25–29. https://doi.org/10.1016/j.cell.2011.03.019

González-Pérez, M. (2015). Applied quantum chemistry. Analysis of the rules of Markovnikov and anti-Markovnikov. International Journal of Science and Advanced Technology, 5(5), 1-6.

González-Pérez, M. (2017). Quantum modeling to determine the carcinogenic potential of aflatoxin B1 produced by Aspegillus sp and its metabolic derivate aflatoxin M1. Mexican Journal of Biotechnology, 2(2), 255-270.

González-Pérez, M. (2017). Quantum Theory of the Electron Transfer Coefficient. International Journal of Advanced Engineering, Management and Science, 3(10), 239932.

González-Pérez, M., Gonzalez-Martinez, D., González-Martínez, E. L., Pacheco-Bautista, D., & Medel-Rojas, A. (2018). Theoretical-Chemical-Quantum Analisys of Sarin Neurotoxicity. World Journal of Pharmacy and Pharmaceutical Sciences, 7(5), 173-180.

González-Perez, M., Pacheco-Bautista, D., Ramirez-Reyes-Montaño, H. A., Medel-Rojas, A., González-Murueta, J. W., & Sánchez, C. (2017). Analysis of the interactions of n-(l-αaspartil)-l-phenylalanine, 1-metil ester (aspartame) and the nitrogen bases of dna and rna using quantum methods. World Journal of Pharmaceutical Research, 6(5), 40-49.

Hausman D. M. (2019). ¿Qué es el cáncer?. Perspectivas en biología y medicina, 62(4), 778–784. https://doi.org/10.1353/pbm.2019.0046

Khanum, F., Bawa, A. S., & Singh, B. P. (2005). Rhodiola rosea: A Versatile Adaptogen. Comprehensive Reviews in Food Science and Food Safety, 4(3), 55-62. https://doi.org/10.1111/j.1541-4337.2005.tb00073.x

Kurkin, V. A. (2013). Phenylpropanoids as the biologically active compounds of the medicinal plants and phytopharmaceuticals. Advances in Biological Chemistry, 03(01), 26-28. https://doi.org/10.4236/abc.2013.31004

Kwon Y. (2018). Los polifenoles derivados de los alimentos inhiben el crecimiento de las células de cáncer de ovario independientemente de su capacidad para inducir respuestas antioxidantes. Heliyon, 4(8), e00753. https://doi.org/10.1016/j.heliyon.2018.e00753    

Li, T. y Zhang, H. (2008). Identificación y determinación comparativa de rodionina en plantas medicinales tibetanas tradicionales de catorce especies de Rhodiola mediante cromatografía líquida de alta resolución-detección de matriz de fotodiodos y ionización por electrospray-espectrometría de masas. Boletín químico y farmacéutico, 56(6), 807–814. https://doi.org/10.1248/cpb.56.807

Li, Y., Pham, V., Bui, M., Song, L., Wu, C., Walia, A., Uchio, E., Smith-Liu, F., & Zi, X. (2017). Rhodiola rosea L.: an Herb with Anti-Stress, Anti-Aging, and Immunostimulating Properties for Cancer Chemoprevention. Current Pharmacology Reports, 3(6), 384-395. https://doi.org/10.1007/s40495-017-0106-1

Liu, Z., Li, X., Simoneau, A. R., Jafari, M. y Zi, X. (2012). Los extractos de Rhodiola rosea y salidroside disminuyen el crecimiento de líneas celulares de cáncer de vejiga a través de la inhibición de la vía mTOR y la inducción de la autofagia. Carcinogénesis molecular, 51(3), 257–267. https://doi.org/10.1002/mc.20780

Olmos, N. L., Sánchez, C. D. C. P., Ramírez, M. A., Soria, R., Mioni, L. C., & Perez, M. G. (2018). Quantum chemical analysis of ethanol and its interaction with amino acids and dipeptides (carnosine). World Journal of Pharmacy and Pharmaceutical Sciences, 7(10), 199-208.

Pacheco-García, P. F., Perez-Gonzalez, A., Ramos-Flores, A., Flores-Gonzalez, L. A., Lopez-Oglesby, J. M., & Gonzalez-Perez, M. (2017). Experimental study and calculation of the electron transfer coefficients on the dissolution behavior of chitosan in organic acids. International Journal of Advanced Engineering, Management and Science, 3(6), 239879.

Panossian, A., Wikman, G., & Sarris, J. (2010). Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine, 17(7), 481-493. https://doi.org/10.1016/j.phymed.2010.02.002

Pérez, M. G., Soria, V. R., & Mioni, L. C. (2019). Demonstration of the Formation of the Caffeine-Dichloromethane-water Emulsion using Quantum Chemistry. International Journal of Advanced Engineering, Management and Science, 4(11), 268276.

Petsalo, A., Jalonen, J. y Tolonen, A. (2006). Identificación de flavonoides de Rhodiola rosea mediante cromatografía líquida-espectrometría de masas en tándem. Revista de cromatografía. A, 1112(1-2), 224–231. https://doi.org/10.1016/j.chroma.2005.11.056

Teodor, E. D., Ungureanu, O., Gatea, F. y Radu, G. L. (2020). El potencial de los flavonoides y taninos de plantas medicinales como agentes anticancerígenos. Agentes anticancerígenos en química medicinal, 20(18), 2216–2227. https://doi.org/10.2174/1871520620666200516150829

Torre, L. A., Siegel, R. L., Ward, E. M. y Jemal, A. (2016). Global Cancer Incidence and Mortality Rates and Trends--An Update. Epidemiología del cáncer, biomarcadores y prevención: una publicación de la Asociación Americana para la Investigación del Cáncer, copatrocinada por la Sociedad Americana de Oncología Preventiva, 25(1), 16–27. https://doi.org/10.1158/1055-9965.EPI-15-0578

Zaimy, M. A., Saffarzadeh, N., Mohammadi, A., Pourghadamyari, H., Izadi, P., Sarli, A., Moghaddam, L. K., Paschepari, S. R., Azizi, H., Torkamandi, S. y Tavakkoly-Bazzaz, J. (2017). Nuevos métodos en el diagnóstico del cáncer y terapia génica del cáncer basada en nanopartículas. Terapia génica contra el cáncer, 24(6), 233–243. https://doi.org/10.1038/cgt.2017.16



[1] Autor Principal

Correspondencia: [email protected]