Propiedades volumétricas y de transporte para las mezclas binarias de β-pineno + n-dodecano

  • Bismarck Eduardo Castillo Moguel División Académica Multidisciplinaria de Jalpa de Méndez Universidad Juárez Autónoma de Tabasco Villahermosa, Tabasco, México
  • Sarai Alejandro Hernández División Académica Multidisciplinaria de Jalpa de Méndez Universidad Juárez Autónoma de Tabasco Villahermosa, Tabasco, México
  • David Guerrero Zárate División Académica Multidisciplinaria de Jalpa de Méndez Universidad Juárez Autónoma de Tabasco Villahermosa, Tabasco, México
Palabras clave: monoterpenos, densidad, viscosidad, propiedades de exceso, redlich-kister

Resumen

El β-pineno es un derivado de la resina de pino, que se ha propuesto como una de las nuevas fuentes de hidrocarburos para la industria química y de combustibles. Por lo anterior, es necesario estudiar su interacción con otras moléculas orgánicas, como los alcanos lineales. En este trabajo se reportan los valores experimentales para la densidad, la viscosidad dinámica y el índice de refracción a presión atmosférica, para el sistema β-pineno + n-dodecano en todo el intervalo de composiciones y en el intervalo de temperatura de 293.15 a 323.15 K. Se obtuvieron las propiedades derivadas, el volumen de exceso mostró valores positivos, mientras que las desviaciones en la viscosidad y en el índice de refracción mostraron valores negativos. Los resultados se ajustaron a una ecuación empírica, la cual permite predecir los valores de las propiedades volumétricas y de transporte para la mezcla, bajo las condiciones estudiadas. Finalmente, se encontró que las interacciones moleculares son débiles y los valores de las propiedades derivadas dependen principalmente de las diferencias en la estructura molecular.

Descargas

La descarga de datos todavía no está disponible.

Citas

Anand, B. P., Saravanan, C. G., & Srinivasan, C. A. (2010). Performance and exhaust emission of turpentine oil powered direct injection diesel engine. Renewable Energy, 35(6), 1179–1184. https://doi.org/10.1016/j.renene.2009.09.010

Bhalodia, J., & Sharma, S. (2013). Viscometric, acoustical and spectroscopic investigation of β-pinene with benzene, toluene, m-Xylene and Mesitylene at 303.15, 308.15 and 313.15 K and atmospheric pressure. Journal of Solution Chemistry, 42(9), 1794–1815. https://doi.org/10.1007/s10953-013-0073-z

Bhalodia, J., & Sharma, S. (2014). Volumetric, refractive and FT-IR behaviour of β-pinene with o, m, p-cresol at 303.15, 308.15 and 313.15 K. Journal of Molecular Liquids, 193, 249–255. https://doi.org/10.1016/j.molliq.2013.12.037

Clará, R. A., Marigliano, A. C. G., & Sólimo, H. N. (2009). Density, viscosity, and refractive index in the range (283.15 to 353.15) K and vapor pressure of α-pinene, d-limonene, (±)-linalool, and citral over the pressure range 1.0 kPa atmospheric pressure. Journal of Chemical and Engineering Data, 54(3), 1087–1090. https://doi.org/10.1021/je8007414

Comelli, F., Ottani, S., Francesconi, R., & Castellari, C. (2002). Densities, viscosities, and refractive indices of binary mixtures containing n-hexane + components of pine resins and essential oils at 298.15 K. Journal of Chemical and Engineering Data, 47(1), 93–97. https://doi.org/10.1021/je010216w

Dabrase, P. B., Patil, R. A., & Salve, P. (2020). STUDY OF MOLECULAR INTERACTIONS IN THE BINARY LIQUID MIXTURES OF ACETOPHENONEAT DIFFERENT TEMPERATURES BY ULTRASONIC METHOD. Vidyabharati International Interdisciplinary Research Journal, 12(1), 67–77. Retrieved from http://www.viirj.org/vol10issue1/8.pdf

Donoso, D., García, D., Ballesteros, R., Lapuerta, M., & Canoira, L. (2021). Hydrogenated or oxyfunctionalized turpentine: Options for automotive fuel components. RSC Advances, 11(30), 18342–18350. https://doi.org/10.1039/d1ra03003e

Francesconi, R., Castellari, C., & Comelli, F. (2001). Densities, viscosities, refractive indices, and excess molar enthalpies of methyl tert-butyl ether + components of pine resins and essential oils at 298.15 K. Journal of Chemical and Engineering Data, 46(6), 1520–1525. https://doi.org/10.1021/je010167n

Gao, Y., Li, J., Li, J., Song, Z., Shang, S., & Rao, X. (2018). High add valued application of turpentine in crop production through structural modification and qsar analysis. Molecules, 23(2). https://doi.org/10.3390/molecules23020356

Honnet, S., Seshadri, K., Niemann, U., & Peters, N. (2009). A surrogate fuel for kerosene. Proceedings of the Combustion Institute, 32 I(1), 485–492. https://doi.org/10.1016/j.proci.2008.06.218

Hudaya, T., Widjaja, O., Rionardi, A., & Soerawidjaja, T. H. (2016). Synthesis of biokerosene through electrochemical hydrogenation of terpene hydrocarbons from turpentine oil. Journal of Engineering and Technological Sciences, 48(6), 655–664. https://doi.org/10.5614/j.eng.technol.sci.2016.48.6.2

Jung, J. K., Lee, Y., Choi, J. W., Jae, J., Ha, J. M., Suh, D. J., … Lee, K. Y. (2016). Production of high-energy-density fuels by catalytic β-pinene dimerization: Effects of the catalyst surface acidity and pore width on selective dimer production. Energy Conversion and Management, 116, 72–79. https://doi.org/10.1016/j.enconman.2016.02.053

Knuuttila, P. (2013). Wood sulphate turpentine as a gasoline bio-component. Fuel, 104(2013), 101–108. https://doi.org/10.1016/j.fuel.2012.06.036

Langa, E., Gibanel, F., Mainar, A. M., Pardo, J. I., & Urieta, J. S. (2005). Excess enthalpy, excess volume, and speed of sound deviation for mixtures of B-pinene + 1-butanol or 2-butanol at several temperatures. Journal of Chemical and Engineering Data, 50(4), 1255–1261. https://doi.org/https://doi.org/10.1021/je050006+

Langa, E., Mainar, A. M., Pardo, J. I., & Urieta, S. (2006). Excess Enthalpy , Density , and Speed of Sound for the Mixtures -Pinene +. Journal of Chemical and Engineering Data, 51(2), 392–397. https://doi.org/https://doi.org/10.1021/je050294+

Lemmon, E. W., McLinden, M. O., & Friend, D. G. (2021). Thermophysical Properties of Fluid Systems. In P. J. Linstrom & W. G. Mallard (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database No. 69. Gaithersburg MD, 20899: National Institute of Standards and Technology. https://doi.org/https://doi.org/10.18434/T4D303

Mahajan, A. R., & Mirgane, S. R. (2013). Excess molar volumes and viscosities for the binary mixtures of n-octane, n-decane, n-dodecane, and n-tetradecane with octan-2-ol at 298.15 K. Journal of Thermodynamics, 1(1). https://doi.org/10.1155/2013/571918

National Center for Biotechnology Information. (2021a). PubChem Compound Summary for CID 14896, beta-Pinene. Retrieved December 22, 2021, from https://pubchem.ncbi.nlm.nih.gov/compound/beta-Pinene

National Center for Biotechnology Information. (2021b). PubChem Compound Summary for CID 8182, Dodecane. Retrieved December 22, 2021, from https://pubchem.ncbi.nlm.nih.gov/compound/Dodecane

Redlich, O., & Kister, A. T. (1948). Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Industrial & Engineering Chemistry, 40(2), 345–348. https://doi.org/10.1021/ie50458a036

Zhao, G., Yuan, Z., Fan, M., Yin, J., & Ma, S. (2019). Experiment and correlation of the thermophysical properties for binary and ternary liquid mixtures of three fatty acid ethyl esters and n-dodecane. Journal of Molecular Liquids, 290, 111207. https://doi.org/10.1016/j.molliq.2019.111207

Publicado
2022-01-05
Cómo citar
Castillo Moguel , B. E., Hernández , S. A., & Guerrero Zárate , D. (2022). Propiedades volumétricas y de transporte para las mezclas binarias de β-pineno + n-dodecano. Ciencia Latina Revista Científica Multidisciplinar, 5(6), 14272-14284. https://doi.org/10.37811/cl_rcm.v5i6.1398
Sección
Artículos