Acute Toxicity in Moderate Hypofractionation Over Three Weeks for Localized Prostate Cancer Without Marker Implantation

Palabras clave: prostate cancer, hypofractionation, radiotherapy, genitourinary, gastrointestinal, toxicity

Resumen

Purpose: prospective observational study of patients with localized prostate cancer referred for radiotherapy using a hypofractionation scheme without marker implantation with the advantages offered by shorter treatments in lower-middle-income countries. Our objective was to establish the acute genitourinary and gastrointestinal toxicity using hypofractionation radiotherapy scheme of 15 fractions. Methods and Materials: From March to November 2022, patients with low- to intermediate-risk prostate cancer received 54 Gy in 15 fractions (3.6 Gy per fraction) for 3 weeks using VMAT without intraprostatic fiducial markers or a rectal hydrogel spacer. Were evaluated through rectal examination, prostate-specific antigen (PSA) levels, and diagnostic imaging such as computed tomography (CT), magnetic resonance imaging (MRI), bone scan, or positron emission tomography (PET/CT) with PSM,  the cumulative incidence of late grade ≥2 genitourinary and gastrointestinal toxicities were analyzed. Results: Thirty-six patients were enrolled in this prospective observational study; all of them were treated with highly hypofractionated VMAT with intermediate to high risk. The follow-up period was 3 months for evaluated acute toxicity. In terms of genitourinary toxicity, 8% of patients experienced grade 2 toxicity, which included urinary frequency, urgency, and dysuria. There were no cases of grade 3 or higher genitourinary toxicity. Regarding gastrointestinal toxicity, 5% of patients experienced grade 2 toxicity, which included diarrhea and rectal bleeding. No grade 3 or higher gastrointestinal toxicity was observed. Conclusions: Highly hypofractionated VMAT delivering 54 Gy in 15 fractions for 3 weeks for prostate cancer without intraprostatic fiducial markers facilitated favorable oncological outcomes without severe complications. These findings support the feasibility and safety of this treatment option and highlight the potential advantages of hypofractionation, further studies are needed to confirm these findings and evaluate the long-term oncological outcomes of moderate hypofractionation for localized prostate cancer.

Descargas

La descarga de datos todavía no está disponible.

Citas

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca, 68(6), 394-424. https://doi.org/10.3322/caac.21492

Rawla, P. (2019). Epidemiology of Prostate Cancer. World Journal Of Oncology, 10(2), 63-89. https://doi.org/10.14740/wjon1191

Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M. Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer. 2018;

Delaney, G. P., Gebski, V., Lunn, A. D., Lunn, M., Rus, M., Manderson, C., & Langlands, A. (1997b). An assessment of the Basic Treatment Equivalent (BTE) model as measure of radiotherapy workload. Clinical Oncology, 9(4), 240-244.

https://doi.org/10.1016/s0936-6555(97)80008-8

Burnet, N. G., Routsis, D. S., Murrell, P., Burton, K. E., Taylor, P. J., Thomas, S. J., Williams, M. V., & Prevost, A. T. (2001). A Tool to Measure Radiotherapy Complexity and Workload: Derivation from the Basic Treatment Equivalent (BTE) Concept. Clinical Oncology, 13(1), 14-23. https://doi.org/10.1007/s001740170108

Hickey, B. E., James, M., Daly, T., Soh, F., & Jeffery, M. (2019). Hypofractionation for clinically localized prostate cancer. Cochrane Library, 2019(10). https://doi.org/10.1002/14651858.cd011462.pub2

Dearnaley, D. P., Syndikus, I., Mossop, H., Khoo, V., Birtle, A., Bloomfield, D., Graham, J. D., Kirkbride, P., Logue, J. P., Malik, Z., Money-Kyrle, J., O’Sullivan, J. M., Panades, M., Parker, C., Patterson, H., Scrase, C., Staffurth, J., Stockdale, A., Tremlett, J., . . . Hall, E. (2016). Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncology/Lancet. Oncology, 17(8), 1047-1060. https://doi.org/10.1016/s1470-2045(16)30102-4

Incrocci, L., Wortel, R. C., Alemayehu, W., Aluwini, S., Schimmel, E. C., Krol, A., Van Der Toorn, P., De Jager, H., Heemsbergen, W. D., Heijmen, B., & Pos, F. J. (2016). Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncology/Lancet. Oncology, 17(8), 1061-1069. https://doi.org/10.1016/s1470-2045(16)30070-5

Pollack, A., Walker, G., Horwitz, E. M., Price, R., Feigenberg, S. J., Konski, A., Stoyanova, R., Movsas, B., Greenberg, R. E., Uzzo, R. G., Ma, C., & Buyyounouski, M. K. (2013). Randomized Trial of Hypofractionated External-Beam Radiotherapy for Prostate Cancer. Journal Of Clinical Oncology, 31(31), 3860-3868. https://doi.org/10.1200/jco.2013.51.1972

Lee, W. R., Dignam, J. J., Amin, M. B., Bruner, D. W., Low, D. A., Swanson, G. P., Shah, A., D’Souza, D., Michalski, J. M., Dayes, I. S., Seaward, S. A., Hall, W. A., Nguyen, P. L., Pisansky, T. M., Faria, S., Chen, Y., Koontz, B. F., Paulus, R., & Sandler, H. M. (2016). Randomized Phase III Noninferiority Study Comparing Two Radiotherapy Fractionation Schedules in Patients With Low-Risk Prostate Cancer. Journal Of Clinical Oncology, 34(20), 2325-2332. https://doi.org/10.1200/jco.2016.67.0448

Miralbell, R., Roberts, S. A., Zubizarreta, E., & Hendry, J. H. (2012). Dose-Fractionation Sensitivity of Prostate Cancer Deduced From Radiotherapy Outcomes of 5,969 Patients in Seven International Institutional Datasets: α/β = 1.4 (0.9–2.2) Gy. International Journal Of Radiation Oncology, Biology, Physics, 82(1), e17-e24. https://doi.org/10.1016/j.ijrobp.2010.10.075

Daşu, A., & Toma-Daşu, I. (2012). Prostate alpha/beta revisited – an analysis of clinical results from 14 168 patients. Acta Oncologica, 51(8), 963-974. https://doi.org/10.3109/0284186x.2012.719635

Nicholas G, Palmer JD, Hurwitz MD, Keith SW, Dicker AP, Den RB. What Is the Ideal Radiotherapy Dose to Treat Prostate Cancer? A Meta- Analysis of Biologically Equivalent Dose Escalation. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology. 2015;115(3):295–300.

Fransson, P., Nilsson, P., Gunnlaugsson, A., Beckman, L., Tavelin, B., Norman, D., Thellenberg‐Karlsson, C., Høyer, M., Lagerlund, M., Kindblom, J., Ginman, C., Johansson, B., Björnlinger, K., Seke, M., Agrup, M., Zackrisson, B., Kjellén, E., Franzén, L., & Widmark, A. (2021). Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer (HYPO-RT-PC): patient-reported quality-of-life outcomes of a randomised, controlled, non-inferiority, phase 3 trial. Lancet Oncology/Lancet. Oncology, 22(2), 235-245

https://doi.org/10.1016/s1470-2045(20)30581-7

Tree, A., Ostler, P., Van Der Voet, H., Chu, W., Loblaw, A., Ford, D., Tolan, S., Jain, S., Martin, A., Staffurth, J., Armstrong, J. G., Camilleri, P., Kancherla, K., Frew, J., Chan, A., Dayes, I. S., Duffton, A., Brand, D., Henderson, D., . . . Oommen, N. B. (2022). Intensity-modulated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): 2-year toxicity results from an open-label, randomised, phase 3, non-inferiority trial. Lancet Oncology/Lancet. Oncology, 23(10), 1308-1320. https://doi.org/10.1016/s1470-2045(22)00517-4

Nakamura, K., Ikeda, I., Inokuchi, H., Takayama, K., Inoue, T., Kamba, T., Ogawa, O., Hiraoka, M., & Mizowaki, T. (2018). A pilot study of highly hypofractionated intensity-modulated radiation therapy over 3 weeks for localized prostate cancer. Journal Of Radiation Research, 59(5), 656-663. https://doi.org/10.1093/jrr/rry060

Santos, M., Chávez-Nogueda, J., Galvis, J. C., Merino, T., Silva, L. o. E., Ricco, M., Sarria, G., Sisamon, I., & Garay, Ó. (2022). Hypofractionation as a solution to radiotherapy access in latin america: expert perspective. Reports Of Practical Oncology And Radiotherapy, 27(6), 1094-1105. https://doi.org/10.5603/rpor.a2022.0108

Avkshtol, V., Ruth, K., Ross, E. A., Hallman, M., Greenberg, R. E., Price, R., Leachman, B., Uzzo, R. G., Ma, C., Chen, D., Geynisman, D. M., Sobczak, M., Zhang, E., Wong, J., Pollack, A., & Horwitz, E. M. (2020). Ten-Year Update of a Randomized, Prospective Trial of Conventional Fractionated Versus Moderate Hypofractionated Radiation Therapy for Localized Prostate Cancer. Journal Of Clinical Oncology, 38(15), 1676-1684. https://doi.org/10.1200/jco.19.01485

Jackson WC, Silva J, Hartman HE. Radioterapia corporal estereotáctica para el cáncer de próstata localizado:A Systematic Review and Meta-Analysis of Over 6,000Patients Treated On Prospective Studies. Int J Radiat Oncol Biol Phys. 2019;104(4):778–89.

Puck, T. T., & Marcus, P. I. (1956). ACTION OF X-RAYS ON MAMMALIAN CELLS. The Journal Of Experimental Medicine/The Journal Of Experimental Medicine, 103(5), 653-666. https://doi.org/10.1084/jem.103.5.653

Wu J, Brasher P, El-Gayed A. Phase II study of hypofractionated image-guided radiotherapy for localized prostate cancer: outcomes of 55Gy in 16 fractions at 3.4Gy per fraction. Radiother Oncol. 2012;103:210–6.

Yu, J. B. (2017). Hypofractionated Radiotherapy for Prostate Cancer: Further Evidence to Tip the Scales. Journal Of Clinical Oncology, 35(17), 1867-1869.

https://doi.org/10.1200/jco.2017.72.7016

Aluwini, S., Pos, F. J., Schimmel, E. C., Van Lin, E., Krol, A., Van Der Toorn, P., De Jager, H., Dirkx, M., Alemayehu, W., Heijmen, B., & Incrocci, L. (2015). Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): acute toxicity results from a randomised non-inferiority phase 3 trial. Lancet Oncology/Lancet. Oncology, 16(3), 274-283. https://doi.org/10.1016/s1470-2045(14)70482-6

Brand, D., Tree, A., Ostler, P., Van Der Voet, H., Loblaw, A., Chu, W., Ford, D., Tolan, S., Jain, S., Martin, A., Staffurth, J., Camilleri, P., Kancherla, K., Frew, J., Chan, A., Dayes, I. S., Henderson, D., Brown, S., Cruickshank, C., . . . Oommen, N. B. (2019). Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial. Lancet Oncology/Lancet. Oncology, 20(11), 1531-1543.

https://doi.org/10.1016/s1470-2045(19)30569-8

Ogino, I., Kaneko, T., Suzuki, R., Matsui, T., Takebayashi, S., Inoue, T., & Morita, S. (2011). Rectal Content and Intrafractional Prostate Gland Motion Assessed by Magnetic Resonance Imaging. Journal Of Radiation Research, 52(2), 199-207. https://doi.org/10.1269/jrr.10126

McParland, N., Pearson, M., Wong, J., Sigur, I., Stenger, C., & Tyldesley, S. (2013). Quantifying daily variation in volume and dose to the prostate, rectum and bladder using cone-beam computerised tomography. Journal Of Radiotherapy In Practice, 13(1), 79-86. https://doi.org/10.1017/s1460396913000216

Radiotherapy in Cancer Care: Facing the Global Challenge. NTERNATIONAL ATOMIC ENERGY AGENCY. 2017;

Lievens, Y., Gospodarowicz, M. K., Grover, S., Jaffray, D. A., Rodin, D., Torode, J., Yap, M. L., Zubizarreta, E., Steering, G., & Committees, A. (2017). Global impact of radiotherapy in oncology: Saving one million lives by 2035. Radiotherapy And Oncology, 125(2), 175-177. https://doi.org/10.1016/j.radonc.2017.10.027

Design and implementation of a radiotherapy programme : clinical, medical physics, radiation protection and safety aspects. Internet] International Atomic energy agency (IAEA). 2005;

Barton MB, Frommer M, Shafiq J. Role of radiotherapy in cancer control in lowincome and middle-income countries. Lancet Onco. 2006;7(7):584–95 .

Knaul FM. The Global Task Force on Expanded Access to Cancer Care and Control in Developing Countries, Harvard Global Equity Initiative, Closing the Cancer Divide: A Blueprint to Expand Access in Low and Middle Income Countries. 2011.

Moseley, D., White, E., Wiltshire, K., Rosewall, T., Sharpe, M. B., Siewerdsen, J. H., Bissonnette, J. P., Gospodarowicz, M. K., Warde, P., Catton, C., & Jaffray, D. A. (2007). Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. International Journal Of Radiation Oncology, Biology, Physics, 67(3), 942-953. https://doi.org/10.1016/j.ijrobp.2006.10.039

Ritter, M. A., Forman, J. D., Kupelian, P. A., Petereit, D. G., Lawton, C. A., Chappell, R. J., & Tomé, W. A. (2009). A Phase I/II Trial of Increasingly Hypofractionated Radiation Therapy for Prostate Cancer. International Journal Of Radiation Oncology, Biology, Physics, 75(3), S80-S81. https://doi.org/10.1016/j.ijrobp.2009.07.201

Atun, R., Jaffray, D. A., Bartoň, M., Bray, F., Baumann, M., Bhatia, V., Hanna, T. P., Knaul, F. M., Lievens, Y., Lui, T. y. M., Milosevic, M., O’Sullivan, B., Rodin, D., Rosenblatt, E., Van Dyk, J., Zubizarreta, E., & Gospodarowicz, M. K. (2015). Expanding global access to radiotherapy. Lancet Oncology/Lancet. Oncology, 16(10), 1153-1186. https://doi.org/10.1016/s1470-2045(15)00222-3

Ariyaratne, H., Chesham, H., Pettingell, J., & Alonzi, R. (2016). Image-guided radiotherapy for prostate cancer with cone beam CT: dosimetric effects of imaging frequency and PTV margin. Radiotherapy And Oncology, 121(1), 103-108. https://doi.org/10.1016/j.radonc.2016.07.018

Höcht, S., Aebersold, D. M., Albrecht, C., Böhmer, D., Flentje, M., Ganswindt, U., Hölscher, T., Martin, T. J., Sedlmayer, F., Wenz, F., Zips, D., & Wiegel, T. (2016). Hypofractionated radiotherapy for localized prostate cancer. Strahlentherapie Und Onkologie, 193(1), 1-12. https://doi.org/10.1007/s00066-016-1041-5

Norihisa Y, Mizowaki T, Takayama K, Miyabe Y, Matsugi K, Matsuo Y, et al. Detailed dosimetric Norihisa, Y., Mizowaki, T., Takayama, K., Miyabe, Y., Matsugi, K., Narabayashi, M., Sakanaka, K., Nakamura, A., Nagata, Y., & Hiraoka, M. (2011). Detailed dosimetric evaluation of intensity-modulated radiation therapy plans created for stage C prostate cancer based on a planning protocol. International Journal Of Clinical Oncology, 17(5), 505-511. https://doi.org/10.1007/s10147-011-0324-1

Mizowaki, T., Norihisa, Y., Takayama, K., Ikeda, I., Inokuchi, H., Nakamura, K., Kamba, T., Inoue, T., Kamoto, T., Ogawa, O., & Hiraoka, M. (2016). Ten-year outcomes of intensity-modulated radiation therapy combined with neoadjuvant hormonal therapy for intermediate- and high-risk patients with T1c-T2N0M0 prostate cancer. International Journal Of Clinical Oncology, 21(4), 783-790. https://doi.org/10.1007/s10147-016-0954-4

Nakamura, K., Ikeda, I., Inokuchi, H., Aizawa, R., Ogata, T., Akamatsu, S., Kobayashi, T., & Mizowaki, T. (2023). Long-Term Outcomes of a Prospective Study on Highly Hypofractionated Intensity Modulated Radiation Therapy for Localized Prostate Cancer for 3 Weeks. Practical Radiation Oncology, 13(6), e530-e537. https://doi.org/10.1016/j.prro.2023.06.004

Publicado
2024-05-22
Cómo citar
Galvis Serrano, J. C., Pabon Girón , A., Mosquera, M. A., Correa, M. F., Maldonado, M. C., & Montufar , D. L. (2024). Acute Toxicity in Moderate Hypofractionation Over Three Weeks for Localized Prostate Cancer Without Marker Implantation. Ciencia Latina Revista Científica Multidisciplinar, 8(2), 7009-7028. https://doi.org/10.37811/cl_rcm.v8i2.11104
Sección
Ciencias de la Salud