Geometallurgical Simulation of the Work Index in a Porphyry Copper Deposit Using Geostatistical Techniques

Palabras clave: geometallurgy, mineral deposit, geostatistics, simulation, processing

Resumen

The spatial variability in the geometallurgical attributes of the deposits is a crucial parameter from the exploration stage, which conditions and influences the mineral processing. Consequently, the objective of this research is to elaborate the geometallurgical simulation of the Bond Work Index for a porphyry copper deposit. For this purpose, information of primary and response attributes corresponding to ore zones, lithologies and BWi contained in 1,449 samples of exploratory drill holes were used. An exploratory data analysis of this information was carried out, and geometallurgical units were defined based on the geological and processing knowledge that validates the behavior of each one of them within the deposit; then Sequential Gaussian Simulation was applied, running 100 realizations in each GMU, those that best reproduce the statistics of the original samples were chosen. The results show that the lithology of the deposit controls the BWi variability and according to the rock competence the ore zones are classified from the softest to the hardest in oxides, mixed and sulfides.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abzalov, M. (2016). Applied Mining Geology (1st ed.). Springer International Publishing. https://doi.org/10.1007/978-3-319-39264-6

Adeli, A. (2018). Geostatistical modeling and validation of geological loggins and geological interpretations [Doctoral Thesis, University of Chile].

https://repositorio.uchile.cl/handle/2250/168147

Aras, A., Özşen, H., & Dursun, A. E. (2019). Using Artificial Neural Networks for the Prediction of Bond Work Index from Rock Mechanics Properties. Mineral Processing and Extractive Metallurgy Review, 41(3), 145–152. https://doi.org/10.1080/08827508.2019.1575216

Bai, T., & Tahmasebi, P. (2022). Sequential Gaussian simulation for geosystems modeling: A machine learning approach. Geoscience Frontiers, 13(1), 101258.

https://doi.org/10.1016/J.gsf.2021.101258

Bilal, D. (2017). Geometallurgical estimation of comminution indices for porphyry copper deposit applying mineralogical approach. https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-66165

Castillo, J., Inca, M., Liceta, J., Ortiz, D., Shishido, M., Anastasio, J., & Vela, Y. (2022). Importancia de la geometalurgia en los yacimientos de oro del futuro en el Perú. Revista Del Instituto de Investigación de La Facultad de Minas, Metalurgia y Ciencias Geográficas, 25(50), 123–135. https://doi.org/10.15381/iigeo.v25i50.24551

Castro, J., Dávila, R., Torres, J., & Aramburú, V. (2022). Geometalurgia y el análisis de la data. Importancia y aplicaciones en Perú. Revista Del Instituto de Investigación de La Facultad de Minas, Metalurgia y Ciencias Geográficas, 25(49), 211–228.

https://doi.org/10.15381/iigeo.v25i49.23025

Coward, S., Vann, J., Dunham, S., & Stewart, M. (2009). The Primary-Response Framework for Geometallurgical Variables. Proceedings of the 7th International Mining Geology Conference, 109–113. https://www.ausimm.com/publications/conference-proceedings/seventh-international-mining-geology-conference-2009/the-primary-response-framework-for-geometallurgical-variables/

Dominy, S., O’connor, L., Parbhakar-Fox, A., Glass, H., & Purevgerel, S. (2018). Geometallurgy—A route to more resilient mine operations. In Minerals (Vol. 8, Issue 12, p. 560). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/min8120560

Ekolle, F., Meying, A., Zanga-Amougou, A., & Emery, X. (2022). Resource Estimation in Multi-Unit Mineral Deposits Using a Multivariate Matérn Correlation Model: An Application in an Iron Ore Deposit of Nkout, Cameroon. Minerals, 12(12), 1599. https://doi.org/10.3390/min12121599

Garrido, M., Sepúlveda, E., Ortiz, J., & Townley, B. (2020). Simulation of Synthetic Exploration and Geometallurgical Database of Porphyry Copper Deposits for Educational Purposes. Natural Resources Research, 29(6), 3527–3545. https://doi.org/10.1007/S11053-020-09692-6/METRICS

Harbort, G., Lam, K., & Sola, C. (2013). The use of Geometallurgy to Estimate Comminution Parameters within Porphyry Copper Deposits. In Proceedings The Second AusIMM International Geometallurgy Conference, October, 217–230.

https://www.ausimm.com/publications/conference-proceedings/the-second-ausimm-international-geometallurgy-conference-2013/the-use-of-geometallurgy-to-estimate-comminution-parameters-within-porphyry-copper-deposits/

Harbort, G., Manfrino, A., & Wright, J. (2011). Development of the Zafranal Geometallurgical Model. First AusIMM International Geometallurgy Conference (GeoMet), September. https://www.ausimm.com/publications/conference-proceedings/first-ausimm-international-geometallurgy-conference-geomet-2011/development-of-the-zafranal-geometallurgical-model/

Hernández-Sampieri, R., & Mendoza, C. (2018). Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta (1st ed.). McGraw-Hill Interamericana S.A.

https://virtual.cuautitlan.unam.mx/rudics/?p=2612

Hosseini, S. A., & Asghari, O. (2015). Simulation of geometallurgical variables through stepwise conditional transformation in Sungun copper deposit, Iran. Arabian Journal of Geosciences, 8(6), 3821–3831. https://doi.org/10.1007/S12517-014-1452-5

Villao Rodríguez, A., Yaguana Torres, J., & Lara Arriaga, S. (2024). Estrategia para el Desarrollo de Habilidades en la Atención de Urgencias Obstétricas en el Estudiante de Medicina Durante su Internado Rotativo. Estudios Y Perspectivas Revista Científica Y Académica , 4(2), 211–234. https://doi.org/10.61384/r.c.a.v4i2.210

Cabrera Loayza , K. V. (2024). Transformando la Educación Básica: Retos y Perspectivas de la Inteligencia Artificial . Revista Científica De Salud Y Desarrollo Humano, 5(2), 01–17. https://doi.org/10.61368/r.s.d.h.v5i2.113

Bautista-Díaz, M. L., Hickman Rodríguez, H., Cepeda Islas, M. L., & Bernardino Miranda, D. J. (2024). Lectura, escritura y oralidad en la educación superior. Emergentes - Revista Científica, 4(1), 218–240. https://doi.org/10.60112/erc.v4i1.105

Agrela Rodrigues, F. de A., Luíza Oliveira Zappalá, Avila, E., & Gonçalves de Carvalho, L. F. (2024). Possíveis razões para o "d-lay" específico em pessoas de alto QI. Revista Veritas De Difusão Científica, 5(1), 24–38. https://doi.org/10.61616/rvdc.v5i1.53

Da Silva Santos , F., & López Vargas , R. (2020). Efecto del Estrés en la Función Inmune en Pacientes con Enfermedades Autoinmunes: una Revisión de Estudios Latinoamericanos. Revista Científica De Salud Y Desarrollo Humano, 1(1), 46–59. https://doi.org/10.61368/r.s.d.h.v1i1.9

Lishchuk, V., Koch, P. H., Ghorbani, Y., & Butcher, A. R. (2020). Towards integrated geometallurgical approach: Critical review of current practices and future trends. Minerals Engineering, 145. https://doi.org/10.1016/j.mineng.2019.106072

Mohammadi, S., Rezai, B., Abdollahzadeh, A., & Mortazavi, S. M. (2021). Evaluation of the geometallurgical indices for comminution properties at Sarcheshmeh porphyry copper mine, Iran. Iranian Journal of Earth Sciences, 13(1), 41–49. https://doi.org/10.30495/IJES.2021.678955

Morales, N., Seguel, S., Cáceres, A., Jélvez, E., & Alarcón, M. (2019). Incorporation of geometallurgical attributes and geological uncertainty into long-term open-pit mine planning. Minerals, 9(2). https://doi.org/10.3390/min9020108

Mu, Y., & Salas, J. C. (2023). Data-Driven Synthesis of a Geometallurgical Model for a Copper Deposit. Processes, 11(6), 1775. https://doi.org/10.3390/pr11061775

Mwanga, A., Rosenkranz, J., & Lamberg, P. (2015). Testing of ore comminution behavior in the geometallurgical context—A review. Minerals, 5(2), 276–297.

https://doi.org/10.3390/MIN5020276

Narciso, J., Araújo, C. P., Azevedo, L., Nunes, R., Costa, J. F., & Soares, A. (2019). A geostatistical simulation of a mineral deposit using uncertain experimental data. Minerals, 9(4), 247. https://doi.org/10.3390/min9040247

Nghipulile, T., Moongo, T., Dzinomwa, G., Maweja, K., Mapani, B., Kurasha, J., & Amwaama, M. (2023). Effect of mineralogy on grindability - A case study of copper ores. Journal of the Southern African Institute of Mining and Metallurgy, 123(3), 133–144. https://doi.org/10.17159/2411-9717/1714/2023

Ranjbar, A., Mousavi, A., & Asghari, O. (2021). Using Rock Geomechanical Characteristics to Estimate Bond Work Index for Mining Production Blocks. Mining, Metallurgy and Exploration, 38(6), 2569–2583. https://doi.org/10.1007/s42461-021-00498-5

Rossi, M., & Deutsch, C. (2014). Mineral Resource Estimation (1st ed.). Springer Dordrecht. https://doi.org/10.1007/978-1-4020-5717-5

Todorovic, D., Trumic, M., Andric, L., Milosevic, V., & Trumic, M. (2017). A quick method for bond work index approximate value determination. Physicochemical Problems of Mineral Processing, 53(1), 321–332. https://doi.org/10.5277/ppmp170126

Publicado
2024-06-03
Cómo citar
Ramos Armijos, N. J., & Calderón Celis , M. (2024). Geometallurgical Simulation of the Work Index in a Porphyry Copper Deposit Using Geostatistical Techniques. Ciencia Latina Revista Científica Multidisciplinar, 8(3), 807-825. https://doi.org/10.37811/cl_rcm.v8i3.11288
Sección
Ciencias y Tecnologías