Propiedades Volumétricas y de Transporte para Mezclas de Α-Pineno + Queroseno

Palabras clave: propiedades de exceso, biocombustibles, poder calorífico, densidad, viscosidad

Resumen

La búsqueda de alternativas para rediucir las emisiones de gases efecto invernadero debido al uso de combustibles fósiles ha llevado a probar diversas moléculas de alta densidad energética, como los terpenos. Una de las sustancias que conforma esta familia es el α-pineno, que ha sido probado como aditivo en los combustibles tradicionales o materia prima en la síntesis de biocombustibles. Se prepararon mezclas de α-pineno con queroseno en todo el intervalo de composiciones; se midió la densidad y la viscosidad cinemática a temperaturas entre 293.15 K y 353.15 K a presión atmosférica, así como el poder calorífico. Se encontró que la densidad y viscosidad disminuyen cuando la temperatura se incrementa;  se determinó la expansividad volumétrica para la mezcla, encontrando que es independiente de la composición y la temepratura, con un valor de  K-1. Se obtuvieron modelos semiempíricos que permiten estimar la densidad, la viscosidad y el poder calorífico con un error cuadrático promedio de 0.001 g∙cm-3, 0.0032 mPa∙s y 0.07 kJ∙g-1, respectivamente.

Descargas

La descarga de datos todavía no está disponible.

Citas

Al Zaabi, A., Raj, A., Elkadi, M., Anjum, D., Prabhu, A., Pena, G. D. J., Li, L., George, A., & Nasser Al Shebli, M. (2022). Variation in sooting characteristics and cetane number of diesel with the addition of a monoterpene biofuel, α-pinene. Fuel, 314. https://doi.org/10.1016/j.fuel.2021.123082
Clará, R. A., Marigliano, A. C. G., & Sólimo, H. N. (2009). Density, Viscosity, and Refractive Index in the Range (283.15 to 353.15) K and Vapor Pressure of α-Pinene, d -Limonene, (±)-Linalool, and Citral Over the Pressure Range 1.0 kPa Atmospheric Pressure. Journal of Chemical & Engineering Data, 54(3), 1087–1090. https://doi.org/10.1021/je8007414
Comelli, F., Francesconi, R., & Castellari, C. (2001). Excess Molar Enthalpies and Excess Molar Volumes of Binary Mixtures Containing Dialkyl Carbonates + Pine Resins at (298.15 and 313.15) K. Journal of Chemical & Engineering Data, 46(1), 63–68. https://doi.org/10.1021/je000181k
Comelli, F., Ottani, S., Francesconi, R., & Castellari, C. (2002). Densities, Viscosities, and Refractive Indices of Binary Mixtures Containing n -Hexane + Components of Pine Resins and Essential Oils at 298.15 K. Journal of Chemical & Engineering Data, 47(1), 93–97. https://doi.org/10.1021/je010216w
Donoso, D., Ballesteros, R., Bolonio, D., García-Martínez, M. J., Lapuerta, M., & Canoira, L. (2021). Hydrogenated Turpentine: A Biobased Component for Jet Fuel. Energy and Fuels, 35(2), 1465–1475. https://doi.org/10.1021/acs.energyfuels.0c03379
Elsharkawy, E. A., Abou Al-sood, M. M., El-Fakharany, M. K., & Ahmed, M. (2021). Assessing and Comparing the Characteristics of CI Engine Powered by Biodiesel–Diesel and Biodiesel–Kerosene Blends. Arabian Journal for Science and Engineering, 46(12), 11771–11782. https://doi.org/10.1007/s13369-021-05703-7
Francesconi, R., Castellari, C., & Comelli, F. (2001a). Densities, Viscosities, Refractive Indices, and Excess Molar Enthalpies of Methyl tert- Butyl Ether + Components of Pine Resins and Essential Oils at 298.15 K. Journal of Chemical & Engineering Data, 46(6), 1520–1525. https://doi.org/10.1021/je010167n
Francesconi, R., Castellari, C., & Comelli, F. (2001b). Excess Molar Enthalpies and Excess Molar Volumes of Binary Mixtures Containing 1,3-Dioxolane or 1,4-Dioxane + Pine Resins at (298.15 and 313.15) K and at Atmospheric Pressure. Journal of Chemical & Engineering Data, 46(3), 577–581. https://doi.org/10.1021/je000337g
Francesconi, R., Comelli, F., & Castellari, C. (2000). Excess molar enthalpies of binary mixtures containing phenetole+α-pinene or β-pinene in the range (288.15–313.15) K, and at atmospheric pressure. Thermochimica Acta, 363(1–2), 115–120.
https://doi.org/10.1016/S0040-6031(00)00605-5
Hamza, N. H., Ekaab, N. S., & Chaichan, M. T. (2020). Impact of using Iraqi biofuel–kerosene blends on coarse and fine particulate matter emitted from compression ignition engines. Alexandria Engineering Journal, 59(3), 1717–1724. https://doi.org/10.1016/j.aej.2020.04.031
Ilić Pajić, J., Ivaniš, G., Radović, I., Grujić, A., Stajić-Trošić, J., Stijepović, M., & Kijevčanin, M. (2020). Experimental densities and derived thermodynamic properties of pure p-cymene, α-pinene, limonene and citral under high pressure conditions. The Journal of Chemical Thermodynamics, 144, 106065. https://doi.org/10.1016/j.jct.2020.106065
Khazaai, S. N. M., Bhuyar, P., Rahim, M. H. A., Alwi, M. H. F. M., Yiting, S., & Maniam, G. P. (2023). Rapid determination of diesel/biodiesel blend ratio using refractive index, density, and kinematic viscosity measurements. Biomass Conversion and Biorefinery, 13(12), 10781–10787. https://doi.org/10.1007/s13399-021-01921-z
Lam, N. L., Smith, K. R., Gauthier, A., & Bates, M. N. (2012). Kerosene: A Review of Household Uses and their Hazards in Low- and Middle-Income Countries. Journal of Toxicology and Environmental Health, Part B, 15(6), 396–432. https://doi.org/10.1080/10937404.2012.710134
Li, H., & Tamura, K. (2006). Ternary and quaternary (liquid+liquid) equilibria for (water+ethanol+α-pinene, +β-pinene, or +limonene) and (water+ethanol+α-pinene+limonene) at the temperature 298.15K. The Journal of Chemical Thermodynamics, 38(8), 1036–1041. https://doi.org/10.1016/j.jct.2005.10.018
Liao, D.-K., Meng, X.-L., Tong, Z.-F., Zheng, D.-X., Peng, D.-Y., & Lu, B. C.-Y. (2007). Excess Molar Enthalpies of p -Cymene + α-Pinene + β-Pinene at (298.15, 308.15, and 318.15) K and at Atmospheric Pressure. Journal of Chemical & Engineering Data, 52(3), 808–811. https://doi.org/10.1021/je060420p
NOM-016-CRE-2016, Especificaciones de Calidad de Los Petrolíferos (2016). http://www.dof.gob.mx/nota_detalle.php?codigo=5450011&fecha=29/08/2016
Ribeiro, A., & Bernardo-Gil, G. (1990). Densities and refractive indices of components of pine resin. Journal of Chemical & Engineering Data, 35(2), 204–206. https://doi.org/10.1021/je00060a033
Srihanun, N., Dujjanutat, P., Muanruksa, P., & Kaewkannetra, P. (2020). Biofuels of green diesel–kerosene–gasoline production from palm oil: Effect of palladium cooperated with second metal on hydrocracking reaction. Catalysts, 10(2). https://doi.org/10.3390/catal10020241
Tavares Sousa, A., & Nieto de Castro, C. A. (1992). Density of α-pinene, β-pinene, limonene, and essence of turpentine. International Journal of Thermophysics, 13(2), 295–301. https://doi.org/10.1007/BF00504438
Trost, D., Polcar, A., Boldor, D., Nde, D. B., Wolak, A., & Kumbár, V. (2021). Temperature dependence of density and viscosity of biobutanol-gasoline blends. Applied Sciences (Switzerland), 11(7). https://doi.org/10.3390/app11073172
Sánchez Puche , E. M., Ovalle , C., Coronel Verdecia, A. R., & González Molina, E. (2024). Factores de Riesgos: Desnutrición, sobrepeso y obesidad infantil en la ciudad de Barranquilla. Estudios Y Perspectivas Revista Científica Y Académica , 4(1), 698–712. https://doi.org/10.61384/r.c.a.v4i1.124
Sánchez Puche , E. M., Ovalle , C., Coronel Verdecia, A. R., & González Molina, E. (2024). Factores de Riesgos: Desnutrición, sobrepeso y obesidad infantil en la ciudad de Barranquilla. Estudios Y Perspectivas Revista Científica Y Académica , 4(1), 698–712. https://doi.org/10.61384/r.c.a.v4i1.125
Da Silva Santos , F., & López Vargas , R. (2020). Efecto del Estrés en la Función Inmune en Pacientes con Enfermedades Autoinmunes: una Revisión de Estudios Latinoamericanos. Revista Científica De Salud Y Desarrollo Humano, 1(1), 46–59. https://doi.org/10.61368/r.s.d.h.v1i1.9
U.S. Environmental Protection Agency. (2011). Screening-level hazard characterization Kerosene/Jet Fuel category.
Viana, M. (2002). About pycnometric density measurements. Talanta, 57(3), 583–593. https://doi.org/10.1016/S0039-9140(02)00058-9
Wang, C., Li, H., Ma, L., & Han, S. (2003). Vapor−Liquid Equilibria for the Binary Mixture α-Pinene + Octane. Journal of Chemical & Engineering Data, 48(5), 1120–1121. https://doi.org/10.1021/je025631i
Xu, Z., Li, H., Wang, C., Liang, W., & Han, S. (2005). Isothermal and isobaric (vapour+liquid) equilibria of (α-pinene+n-butanol+n-octane). The Journal of Chemical Thermodynamics, 37(3), 201–204. https://doi.org/10.1016/j.jct.2004.08.012
Yang, C., Liu, Y., Hu, Y., Wang, P., Yang, Y., Chen, S., Wang, Z., & Li, X. (2024). Highly efficient synthesis of high-density biofuels from biomass-derived α-pinene catalyzed by mesoporous H-ZSM-5. Catalysis Communications. https://doi.org/10.1016/j.catcom.2024.106881
Publicado
2024-06-24
Cómo citar
Romero Leyva , D. S., Alejandro Hernández, S., & Guerrero Zárate, D. (2024). Propiedades Volumétricas y de Transporte para Mezclas de Α-Pineno + Queroseno. Ciencia Latina Revista Científica Multidisciplinar, 8(3), 4287-4300. https://doi.org/10.37811/cl_rcm.v8i3.11643
Sección
Ciencias Sociales y Humanas