AI for Psychological Profiles: Advances, Challenges, and Future Directions

Palabras clave: artificial intelligence, psychological profiles, machine learning, mental health, data analysis

Resumen

This paper assesses Artificial Intelligences in the development of psychological profiles where it has prospects in clinical examination, therapy of mental disorders, and description of behavior. Yet, in the adoption of AI in the field of psychology, there are corresponding challenges to it.  Issues include ethical questions in, data protection, and the transparency of the created models. This paper lays down these issues, the advantages and efficiency of employing AI solutions in profiling psychology, and possible recommendations for the further studies and research that could overcome current deficiencies. The literature review and systematic study, shows the author’s goal as to clarify the current trends and possible development of AI in psychological profiling, focusing on possible interdisciplinary cooperation and the importance of ethical regulation for achieving the best result.

Descargas

La descarga de datos todavía no está disponible.

Citas

Chikersal, P., Tomprou, M., Kim, Y. J., Woolley, A. W., & Dabbish, L. (2017, February). Deep structures of collaboration: Physiological correlates of collective intelligence and group satisfaction. In Proceedings of the 2017 ACM conference on computer supported cooperative work and social computing. Eichstaedt. https://doi.org/10.1145/2998181.2998250

Coppersmith, G., Dredze, M., Harman, C., & Hollingshead, K. (2015). From ADHD to SAD: Analyzing the language of mental health on Twitter through self-reported diagnoses. In Proceedings of the 2nd workshop on computational linguistics and clinical psychology: from linguistic signal to clinical reality, 1-10. https://doi.org/10.3115/v1/W15-1201

De Choudhury, M., Counts, S., & Horvitz, E. (2013, April). Predicting postpartum changes in emotion and behavior via social media. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 3267-3276).

https://dl.acm.org/doi/10.1145/2470654.2466447

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608. https://arxiv.org/abs/1702.08608

Eichstaedt, J. C., Schwartz, H. A., Kern, M. L., Park, G., Labarthe, D. R., Merchant, R. M., ... & Seligman, M. E. (2015). Psychological language on Twitter predicts county-level heart disease mortality. Psychological science, 26(2), 159-169. https://doi.org/10.1177/0956797614557867

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. nature, 542(7639), 115-118. https://pubmed.ncbi.nlm.nih.gov/28117445/

Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... & Vayena, E. (2018). AI4People—an ethical framework for a good AI society: opportunities, risks, principles, and recommendations. Minds and machines, 28(4), 689-707.

https://doi.org/10.1007/s11023-018-9482-5

Gill, A., Nowson, S., & Oberlander, J. (2009, March). What are they blogging about? Personality, topic and motivation in blogs. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 3, No. 1, pp. 18-25). https://doi.org/10.1609/icwsm.v3i1.13949

Gosling, S. D., & Mason, W. (2015). Internet research in psychology. Annual review of psychology, 66(1), 877-902. https://doi.org/10.1146/annurev-psych-010814-015321

Gratch, J., Lucas, G. M., King, A. A., & Morency, L. P. (2014, May). It's only a computer: the impact of human-agent interaction in clinical interviews. In Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems (pp. 85-92).

https://dl.acm.org/doi/10.5555/2615731.2615748

Guntuku, S. C., Schneider, R., Pelullo, A., Young, J., Wong, V., Ungar, L., ... & Merchant, R. (2019). Studying expressions of loneliness in individuals using twitter: an observational study. BMJ open, 9(11), e030355-e030355. https://doi.org/10.1136/bmjopen-2019-030355

Guntuku, S. C., Yaden, D. B., Kern, M. L., Ungar, L. H., & Eichstaedt, J. C. (2017). Detecting depression and mental illness on social media: an integrative review. Current Opinion in Behavioral Sciences, 18, 43-49. https://doi.org/10.1016/j.cobeha.2017.07.005

Kern, M. L., Eichstaedt, J. C., Schwartz, H. A., Dziurzynski, L., Ungar, L. H., Stillwell, D. J., ... & Seligman, M. E. (2014). The online social self: An open vocabulary approach to personality. Assessment, 21(2), 158-169. https://doi.org/10.1177/1073191113514104

Kern, M. L., McCarthy, P. X., Chakrabarty, D., & Rizoiu, M. A. (2019). Social media-predicted personality traits and values can help match people to their ideal jobs. Proceedings of the National Academy of Sciences, 116(52), 26459-26464.

https://doi.org/10.1073/pnas.1917942116

Kosinski, M., Bachrach, Y., Kohli, P., Stillwell, D., & Graepel, T. (2014). Manifestations of user personality in website choice and behavior on online social networks. Machine Learning, 95(3), 357-380. https://doi.org/10.1007/s10994-013-5415-y

Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the national academy of sciences, 110(15), 5802-5805. https://doi.org/10.1073/pnas.1218772110

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2022). A survey on bias and fairness in machine learning. arXiv preprint arXiv:1908.09635.

https://doi.org/10.1145/3457607

Mowery, D., Smith, H., Cheney, T., Stoddard, G., Coppersmith, G., Bryan, C., & Conway, M. (2017). Understanding depressive symptoms and psychosocial stressors on Twitter: a corpus-based study. Journal of medical Internet research, 19(2), e48-e48. https://doi.org/10.2196/jmir.6895

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453. https://doi.org/10.1126/science.aax2342

Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J., ... & Seligman, M. E. (2015). Automatic personality assessment through social media language. Journal of personality and social psychology, 108(6), 934-952. https://doi.org/10.1037/pspp0000020

Reece, A. G., & Danforth, C. M. (2017). Instagram photos reveal predictive markers of depression. EPJ Data Science, 6(1), 1-12. 10. https://doi.org/10.1140/epjds/s13688-017-0110-z

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144). https://doi.org/10.1145/2939672.2939778

Russell, S. J., & Norvig, P. (2021). Artificial intelligence: a modern approach. 4th Ed. Pearson.

Scherer, S., Stratou, G., Lucas, G., Mahmoud, M., Boberg, J., Gratch, J., & Morency, L. P. (2014). Automatic audiovisual behavior descriptors for psychological disorder analysis. Image and Vision Computing, 32(10), 648-658. https://doi.org/10.1016/j.imavis.2014.06.001

Schwartz, H. A., Eichstaedt, J. C., Dziurzynski, L., Kern, M. L., Blanco, E., Kosinski, M., ... & Ungar, L. H. (2013, March). Toward personality insights from language exploration in social media. In 2013 AAAI Spring Symposium Series. Retrieved from:

https://www.researchgate.net/publication/283270498_Toward_Personality_Insights_from_Language_Exploration_in_Social_Media

Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., ... & Ungar, L. H. (2013). Personality, gender, and age in the language of social media: The open-vocabulary approach. PloS one, 8(9), 1-16. https://doi.org/10.1371/journal.pone.0073791

Settanni, M., Azucar, D., & Marengo, D. (2018). Predicting individual characteristics from digital traces on social media: A meta-analysis. Cyberpsychology, Behavior, and Social Networking, 21(4), 217-228. http://dx.doi.org/10.1089/cyber.2017.0384

Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2019). Detection of depression-related posts in reddit social media forum. Ieee Access, 7, 44883-44893.

https://doi.org/10.1109/ACCESS.2019.2909180

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature medicine, 25(1), 44-56. https://pubmed.ncbi.nlm.nih.gov/30617339/

Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer-based personality judgments are more accurate than those made by humans. Proceedings of the National Academy of Sciences, 112(4), 1036-1040. https://doi.org/10.1073/pnas.1418680112

Publicado
2024-07-29
Cómo citar
Ocana Flores, H. I., & Luna , A. (2024). AI for Psychological Profiles: Advances, Challenges, and Future Directions. Ciencia Latina Revista Científica Multidisciplinar, 8(3), 10592-10609. https://doi.org/10.37811/cl_rcm.v8i3.12221
Sección
Ciencias y Tecnologías