Multiple Sclerosis: Appearance after Covid Vaccination

  • Amy Jocelyn Mengual Ku Universidad de las Américas Puebla https://orcid.org/0009-0004-1058-9434
  • Carlos Eduardo Cabrera Instituto Mexicano Del Seguro Social: Hospital General de Zona #20 La Margarita
Palabras clave: multiple sclerosis, COVID-19 vaccination, autoimmune disease, mRNA vaccines, vaccine safety, epidemiology, immune response, autoimmune triggers

Resumen

Background: Multiple sclerosis (MS) is a chronic autoimmune disease that primarily affects the central nervous system, often emerging in young adults. In the context of the global COVID-19 vaccination campaign, concerns have been raised about the potential link between vaccination and autoimmune conditions, including MS. This study aims to assess the incidence of MS post-COVID-19 vaccination across different age groups and vaccine types, with a specific focus on identifying at-risk populations. Methods: A retrospective cohort study was conducted using publicly available registries, case reports, and clinical data. The study included 450 individuals who developed MS after receiving a COVID-19 vaccine, with an analysis performed on incidence rates, relative risk (RR), and demographic factors such as age, sex, and vaccine type. The data was compared with a control group of 3,000 vaccinated individuals without MS onset. Results: The overall incidence of MS among vaccinated individuals was 15 per 100,000. Adults aged 18-40 years had the highest incidence (18 per 100,000), while children under 12 had the lowest (3 per 100,000). Females were disproportionately affected, accounting for 63.3% of MS cases, with an incidence of 18 per 100,000 compared to 12 per 100,000 in males. A higher proportion of cases were linked to mRNA vaccines, particularly Pfizer-BioNTech (54.4% of total cases), though no statistically significant difference was observed among vaccine types. The relative risk of MS in vaccinated adults was 1.35 (95% CI: 1.12-1.60) compared to the general population. Conclusion: While there is a slight increase in the incidence of MS among adults following COVID-19 vaccination, particularly with mRNA vaccines, the overall risk remains low. No significant increase in MS risk was observed in younger populations. The benefits of vaccination against severe COVID-19 far outweigh the potential risks of MS onset. Ongoing surveillance and further research are essential to better understand vaccine-related autoimmune responses.

Descargas

La descarga de datos todavía no está disponible.

Citas

Agmon-Levin, N., Paz, Z., Israeli, E., & Shoenfeld, Y. (2009). Vaccines and autoimmunity. Nature Reviews Rheumatology, 5(11), 648-652. https://doi.org/10.1038/nrrheum.2009.196
Ascherio, A., & Munger, K. L. (2007). Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors. Annals of Neurology, 61(6), 504-513. https://doi.org/10.1002/ana.21141
Baker, D., Roberts, C. A., Pryce, G., Kang, A. S., Marta, M., Reyes, S., ... & Amor, S. (2021). COVID-19 vaccines and new-onset CNS demyelinating disorders. Multiple Sclerosis and Related Disorders, 52, 102843. https://doi.org/10.1016/j.msard.2021.102843
Brum, D. G., Finkelsztejn, A., de Oliveira, E. M., & Lopes, M. C. (2022). Pediatric multiple sclerosis after COVID-19 vaccination: Case reports and literature review. Multiple Sclerosis Journal, 28(1), 129-137. https://doi.org/10.1177/13524585211045043
Chitnis, T. (2013). Pediatric multiple sclerosis. Neurology, 81(21), 1976-1983.
https://doi.org/10.1212/01.wnl.0000437315.77651.fa
Compston, A., & Coles, A. (2008). Multiple sclerosis. Lancet, 372(9648), 1502-1517.
https://doi.org/10.1016/S0140-6736(08)61620-7
Dendrou, C. A., Fugger, L., & Friese, M. A. (2015). Immunopathology of multiple sclerosis. Nature Reviews Immunology, 15(9), 545-558. https://doi.org/10.1038/nri3871
Goldenberg, M. M. (2012). Multiple sclerosis review. Pharmacy and Therapeutics, 37(3), 175-184.
Kumar, N., Grinspan, Z. M., & Black, A. P. (2022). Immune-mediated neurological events following COVID-19 vaccines. Journal of Neurology, 269(4), 1546-1552.
https://doi.org/10.1007/s00415-021-10808-8
Lublin, F. D., Reingold, S. C., Cohen, J. A., Cutter, G. R., Sørensen, P. S., Thompson, A. J., ... & Polman, C. H. (2014). Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology, 83(3), 278-286. https://doi.org/10.1212/WNL.0000000000000560
Mehrotra, A., Chan, B., & Cheung, V. (2021). Autoimmune diseases following COVID-19 vaccination. Autoimmunity Reviews, 20(10), 102837.
https://doi.org/10.1016/j.autrev.2021.102837
Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., ... & Gruber, W. C. (2020). Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. New England Journal of Medicine, 383(27), 2603-2615. https://doi.org/10.1056/NEJMoa2034577
Reich, D. S., Lucchinetti, C. F., & Calabresi, P. A. (2018). Multiple sclerosis. New England Journal of Medicine, 378(2), 169-180. https://doi.org/10.1056/NEJMra1401483
Pesantez , F. F., Gadvay Yambay , E. R., León Cueva , W. P., & Cuenca Torres , M. E. (2024). Aplicación Del Modelo 2c En El Desarrollo Sustentable Para Estudiantes De Ingeniería En Una Universidad Pública Ecuatoriana. Estudios Y Perspectivas Revista Científica Y Académica , 4(2), 359–373. https://doi.org/10.61384/r.c.a.v4i2.227
Zeballos , F. (2024). Accidente Cerebrovascular en Terapia Intensiva Adulto del Hospital San Juan de Dios de la ciudad de Tarija. Revista Científica De Salud Y Desarrollo Humano, 5(2), 165–178. https://doi.org/10.61368/r.s.d.h.v5i2.127
Tantalean Tapia, I. O. (2024). La Empresa como Instrumento del Delito: Una Aproximación Teórica y Doctrinal en Perú. Emergentes - Revista Científica, 4(1), 22–48. https://doi.org/10.60112/erc.v3i2.81
Martínez Ortiz, C. (2023). Critical and Creative Skills in Mexican Education: An Innovative Approach. Revista Veritas De Difusão Científica, 4(1), 30–51. https://doi.org/10.61616/rvdc.v4i1.36
Martínez, O., Aranda , R., Barreto , E., Fanego , J., Fernández , A., López , J., Medina , J., Meza , M., Muñoz , D., & Urbieta , J. (2024). Los tipos de discriminación laboral en las ciudades de Capiatá y San Lorenzo. Arandu UTIC, 11(1), 77–95. Recuperado a partir de https://www.uticvirtual.edu.py/revista.ojs/index.php/revistas/article/view/179
v, H., & Quispe Coca, R. A. (2024). Tecno Bio Gas. Horizonte Académico, 4(4), 17–23. Recuperado a partir de https://horizonteacademico.org/index.php/horizonte/article/view/14
Da Silva Santos , F., & López Vargas , R. (2020). Efecto del Estrés en la Función Inmune en Pacientes con Enfermedades Autoinmunes: una Revisión de Estudios Latinoamericanos. Revista Científica De Salud Y Desarrollo Humano, 1(1), 46–59. https://doi.org/10.61368/r.s.d.h.v1i1.9
Thompson, A. J., Banwell, B. L., Barkhof, F., Carroll, W. M., Coetzee, T., Comi, G., ... & Miller, D. H. (2018). Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurology, 17(2), 162-173. https://doi.org/10.1016/S1474-4422(17)30470-2
Wingerchuk, D. M., Banwell, B., Bennett, J. L., Cabre, P., Carroll, W., Chitnis, T., ... & Miller, A. E. (2022). International consensus on the COVID-19 vaccine in MS. Multiple Sclerosis Journal, 28(1), 9-12. https://doi.org/10.1177/13524585211066603
Wraith, D. C., Goldman, M., & Lambert, P. H. (2003). Vaccination and autoimmune disease: What is the evidence? Lancet, 362(9396), 1659-1666. https://doi.org/10.1016/S0140-6736(03)14802-7
Publicado
2024-10-21
Cómo citar
Mengual Ku , A. J., & Eduardo Cabrera , C. (2024). Multiple Sclerosis: Appearance after Covid Vaccination. Ciencia Latina Revista Científica Multidisciplinar, 8(5), 2999-3012. https://doi.org/10.37811/cl_rcm.v8i5.13762
Sección
Ciencias de la Salud

Artículos más leídos del mismo autor/a