Propiedades volumétricas y de transporte para las mezclas binarias de β-pineno + n-dodecano

  • Bismarck Eduardo Castillo Moguel División Académica Multidisciplinaria de Jalpa de Méndez Universidad Juárez Autónoma de Tabasco Villahermosa, Tabasco, México
  • Sarai Alejandro Hernández División Académica Multidisciplinaria de Jalpa de Méndez Universidad Juárez Autónoma de Tabasco Villahermosa, Tabasco, México
  • David Guerrero Zárate División Académica Multidisciplinaria de Jalpa de Méndez Universidad Juárez Autónoma de Tabasco Villahermosa, Tabasco, México

Resumen

El β-pineno es un derivado de la resina de pino, que se ha propuesto como una de las nuevas fuentes de hidrocarburos para la industria química y de combustibles. Por lo anterior, es necesario estudiar su interacción con otras moléculas orgánicas, como los alcanos lineales. En este trabajo se reportan los valores experimentales para la densidad, la viscosidad dinámica y el índice de refracción a presión atmosférica, para el sistema β-pineno + n-dodecano en todo el intervalo de composiciones y en el intervalo de temperatura de 293.15 a 323.15 K. Se obtuvieron las propiedades derivadas, el volumen de exceso mostró valores positivos, mientras que las desviaciones en la viscosidad y en el índice de refracción mostraron valores negativos. Los resultados se ajustaron a una ecuación empírica, la cual permite predecir los valores de las propiedades volumétricas y de transporte para la mezcla, bajo las condiciones estudiadas. Finalmente, se encontró que las interacciones moleculares son débiles y los valores de las propiedades derivadas dependen principalmente de las diferencias en la estructura molecular.

Palabras clave: monoterpenos, densidad, viscosidad, propiedades de exceso, redlich-kister

Descargas

La descarga de datos todavía no está disponible.

Citas

Anand, B. P., Saravanan, C. G., & Srinivasan, C. A. (2010). Performance and exhaust emission of turpentine oil powered direct injection diesel engine. Renewable Energy, 35(6), 1179–1184. https://doi.org/10.1016/j.renene.2009.09.010

Bhalodia, J., & Sharma, S. (2013). Viscometric, acoustical and spectroscopic investigation of β-pinene with benzene, toluene, m-Xylene and Mesitylene at 303.15, 308.15 and 313.15 K and atmospheric pressure. Journal of Solution Chemistry, 42(9), 1794–1815. https://doi.org/10.1007/s10953-013-0073-z

Bhalodia, J., & Sharma, S. (2014). Volumetric, refractive and FT-IR behaviour of β-pinene with o, m, p-cresol at 303.15, 308.15 and 313.15 K. Journal of Molecular Liquids, 193, 249–255. https://doi.org/10.1016/j.molliq.2013.12.037

Clará, R. A., Marigliano, A. C. G., & Sólimo, H. N. (2009). Density, viscosity, and refractive index in the range (283.15 to 353.15) K and vapor pressure of α-pinene, d-limonene, (±)-linalool, and citral over the pressure range 1.0 kPa atmospheric pressure. Journal of Chemical and Engineering Data, 54(3), 1087–1090. https://doi.org/10.1021/je8007414

Comelli, F., Ottani, S., Francesconi, R., & Castellari, C. (2002). Densities, viscosities, and refractive indices of binary mixtures containing n-hexane + components of pine resins and essential oils at 298.15 K. Journal of Chemical and Engineering Data, 47(1), 93–97. https://doi.org/10.1021/je010216w

Dabrase, P. B., Patil, R. A., & Salve, P. (2020). STUDY OF MOLECULAR INTERACTIONS IN THE BINARY LIQUID MIXTURES OF ACETOPHENONEAT DIFFERENT TEMPERATURES BY ULTRASONIC METHOD. Vidyabharati International Interdisciplinary Research Journal, 12(1), 67–77. Retrieved from http://www.viirj.org/vol10issue1/8.pdf

Donoso, D., García, D., Ballesteros, R., Lapuerta, M., & Canoira, L. (2021). Hydrogenated or oxyfunctionalized turpentine: Options for automotive fuel components. RSC Advances, 11(30), 18342–18350. https://doi.org/10.1039/d1ra03003e

Francesconi, R., Castellari, C., & Comelli, F. (2001). Densities, viscosities, refractive indices, and excess molar enthalpies of methyl tert-butyl ether + components of pine resins and essential oils at 298.15 K. Journal of Chemical and Engineering Data, 46(6), 1520–1525. https://doi.org/10.1021/je010167n

Gao, Y., Li, J., Li, J., Song, Z., Shang, S., & Rao, X. (2018). High add valued application of turpentine in crop production through structural modification and qsar analysis. Molecules, 23(2). https://doi.org/10.3390/molecules23020356

Honnet, S., Seshadri, K., Niemann, U., & Peters, N. (2009). A surrogate fuel for kerosene. Proceedings of the Combustion Institute, 32 I(1), 485–492. https://doi.org/10.1016/j.proci.2008.06.218

Hudaya, T., Widjaja, O., Rionardi, A., & Soerawidjaja, T. H. (2016). Synthesis of biokerosene through electrochemical hydrogenation of terpene hydrocarbons from turpentine oil. Journal of Engineering and Technological Sciences, 48(6), 655–664. https://doi.org/10.5614/j.eng.technol.sci.2016.48.6.2

Jung, J. K., Lee, Y., Choi, J. W., Jae, J., Ha, J. M., Suh, D. J., … Lee, K. Y. (2016). Production of high-energy-density fuels by catalytic β-pinene dimerization: Effects of the catalyst surface acidity and pore width on selective dimer production. Energy Conversion and Management, 116, 72–79. https://doi.org/10.1016/j.enconman.2016.02.053

Knuuttila, P. (2013). Wood sulphate turpentine as a gasoline bio-component. Fuel, 104(2013), 101–108. https://doi.org/10.1016/j.fuel.2012.06.036

Langa, E., Gibanel, F., Mainar, A. M., Pardo, J. I., & Urieta, J. S. (2005). Excess enthalpy, excess volume, and speed of sound deviation for mixtures of B-pinene + 1-butanol or 2-butanol at several temperatures. Journal of Chemical and Engineering Data, 50(4), 1255–1261. https://doi.org/https://doi.org/10.1021/je050006+

Langa, E., Mainar, A. M., Pardo, J. I., & Urieta, S. (2006). Excess Enthalpy , Density , and Speed of Sound for the Mixtures -Pinene +. Journal of Chemical and Engineering Data, 51(2), 392–397. https://doi.org/https://doi.org/10.1021/je050294+

Lemmon, E. W., McLinden, M. O., & Friend, D. G. (2021). Thermophysical Properties of Fluid Systems. In P. J. Linstrom & W. G. Mallard (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database No. 69. Gaithersburg MD, 20899: National Institute of Standards and Technology. https://doi.org/https://doi.org/10.18434/T4D303

Mahajan, A. R., & Mirgane, S. R. (2013). Excess molar volumes and viscosities for the binary mixtures of n-octane, n-decane, n-dodecane, and n-tetradecane with octan-2-ol at 298.15 K. Journal of Thermodynamics, 1(1). https://doi.org/10.1155/2013/571918

National Center for Biotechnology Information. (2021a). PubChem Compound Summary for CID 14896, beta-Pinene. Retrieved December 22, 2021, from https://pubchem.ncbi.nlm.nih.gov/compound/beta-Pinene

National Center for Biotechnology Information. (2021b). PubChem Compound Summary for CID 8182, Dodecane. Retrieved December 22, 2021, from https://pubchem.ncbi.nlm.nih.gov/compound/Dodecane

Redlich, O., & Kister, A. T. (1948). Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Industrial & Engineering Chemistry, 40(2), 345–348. https://doi.org/10.1021/ie50458a036

Zhao, G., Yuan, Z., Fan, M., Yin, J., & Ma, S. (2019). Experiment and correlation of the thermophysical properties for binary and ternary liquid mixtures of three fatty acid ethyl esters and n-dodecane. Journal of Molecular Liquids, 290, 111207. https://doi.org/10.1016/j.molliq.2019.111207

Publicado
2022-01-05
Cómo citar
Castillo Moguel , B. E., Hernández , S. A., & Guerrero Zárate , D. (2022). Propiedades volumétricas y de transporte para las mezclas binarias de β-pineno + n-dodecano. Ciencia Latina Revista Científica Multidisciplinar, 5(6), 14272-14284. https://doi.org/10.37811/cl_rcm.v5i6.1398
Sección
Artículos