Propuesta de una escuadra de mantenimiento mecánico y eléctrico de vehículos militares para reducir costos de mantenimiento en las brigadas del Ejército Nacional de Colombia
Resumen
Este estudio propone la creación de escuadras de mantenimiento mecánico y eléctrico en las brigadas del Ejército Nacional de Colombia, compuestas por personal capacitado, con el objetivo de mejorar el estado de los vehículos militares y reducir los costos de mantenimiento. Actualmente, el ejército enfrenta desafíos significativos en la gestión de su flota vehicular debido a la falta de personal técnico especializado vinculado directamente con la institución. Esto ha generado una dependencia excesiva de contratistas externos, lo que se traduce en demoras, costos elevados y una menor eficiencia operativa. El estudio emplea una metodología de enfoque mixto, combinando datos cuantitativos, obtenidos a través de encuestas a 120 técnicos, militares y civiles con experiencia en mantenimiento vehicular, y datos cualitativos, recabados mediante entrevistas semiestructuradas con personal clave en las brigadas. Se adopta un diseño transversal para analizar el estado actual del mantenimiento y la viabilidad de implementar las escuadras propuestas. Los resultados esperados incluyen una reducción significativa de los costos de mantenimiento, una mayor disponibilidad de vehículos y la mejora en la capacidad operativa del ejército. Esta investigación no solo aborda una necesidad crítica dentro del ejército, sino que también proporciona una solución práctica y sostenible para optimizar el uso de los recursos y mejorar la eficiencia operativa en las fuerzas armadas de Colombia. Además, contribuye al desarrollo de un sistema de mantenimiento más autónomo y eficiente dentro de las brigadas.
Descargas
Citas
Brezonick, M. (2005a). A matter of scale. Diesel Progress North American Edition, 71(7), 28–31. https://www.scopus.com/inward/record.uri?eid=2-s2.0-22944446753&partnerID=40&md5=d41f4ffb5c1476021dca2ed25f0dca2f
Brezonick, M. (2005b). A matter of scale. Diesel Progress North American Edition, 71(7), 28–31. https://www.scopus.com/inward/record.uri?eid=2-s2.0-22944446753&partnerID=40&md5=d41f4ffb5c1476021dca2ed25f0dca2f
Delgado, J., Arrabal, L., & Aguirre, M. Á. (2005). Desarrollo de un combustible diésel adaptado a los nuevos motores: Estudio del efecto de los desactivadores de metales en la estabilidad del combustible. Ingenieria Quimica, 37(424), 113–124. https://www.scopus.com/inward/record.uri?eid=2-s2.0-21644446216&partnerID=40&md5=e79f85261027c49ed6a405d2903324fa
Agrela Rodrigues, F. de A., Moreira da Silveira, F., Moreira de Lima, M. R., & Pinto Uchôa , K. S. (2024). Identificando a Inteligência em Crianças: Traços Físicos e Comportamentais. Ciencia Y Reflexión, 3(2), 21–51. https://doi.org/10.70747/cr.v3i2.5
Chavarría Hidalgo, C. (2024). Calculation of productive capacity: From theory to practice. Ciencia Y Reflexión, 3(2), 194–214. https://doi.org/10.70747/cr.v3i2.20
Vega Alvarez, E., & Huang Chang, Y. (2024). Blended Learning, and Its Impact on English Speaking Skills in Pronunciation in Group 11-4 of Liceo de Santo Domingo, I Quarter 2024. Ciencia Y Reflexión, 3(2), 159–173. https://doi.org/10.70747/cr.v3i2.18
Gelaw, M. T., Azene, D. K., & Berhan, E. (2024). Assessment of critical success factors, barriers and initiatives of total productive maintenance (TPM) in selected Ethiopian manufacturing industries. Journal of Quality in Maintenance Engineering, 30(1), 51–80. https://doi.org/10.1108/JQME-11-2022-0073
Gottschalk, H., & Saadi, M. (2019). Shape gradients for the failure probability of a mechanic component under cyclic loading: a discrete adjoint approach. Computational Mechanics, 64(4), 895–915. https://doi.org/10.1007/s00466-019-01686-3
Hermans, M., & Tamás, P. (2024a). OVERALL EQUIPMENT EFFICIENCY, TOTAL PRODUCTIVE MAINTENANCE AND DIGITAL TWIN TECHNOLOGIES - A LITERATURE REVIEW. Academic Journal of Manufacturing Engineering, 22(2), 129–137. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201374412&partnerID=40&md5=741159cae05e11b80f08bf377e803387
Hermans, M., & Tamás, P. (2024b). OVERALL EQUIPMENT EFFICIENCY, TOTAL PRODUCTIVE MAINTENANCE AND DIGITAL TWIN TECHNOLOGIES - A LITERATURE REVIEW. Academic Journal of Manufacturing Engineering, 22(2), 129–137. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201374412&partnerID=40&md5=741159cae05e11b80f08bf377e803387
Hoyas, S., Pastor, J. M., Khuong-Anh, D., Mompó-Laborda, J. M., & Ravet, F. (2011). Evaluation of the Eulerian-Lagrangian spray atomisation (ELSA) in spray simulations. International Journal of Vehicle Systems Modelling and Testing, 6(3–4), 187–201. https://doi.org/10.1504/IJVSMT.2011.044224
Johnson, J., Pramod, V. K., & Pramod, V. R. (2024). Analytical hierarchy process-based maintenance quality function deployment integrating total quality management with total productive maintenance and its application in dairy industry. International Journal of Industrial and Systems Engineering, 46(3), 404–432. https://doi.org/10.1504/IJISE.2024.137957
Ke, Z., Liu, C., Guo, M., Wei, W., & Yan, Q. (2024). Cascade System Design of Torque Converter Based on Variable Sectional-Area. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 44(5), 512–520. https://doi.org/10.15918/j.tbit1001-0645.2023.148
Kumar, P. (2023). Dynamic analysis and identification in a cracked and unbalanced rigid rotor with two offset discs and one middle disc mounted on foil bearings. International Journal of Dynamics and Control, 12(8), 2648–2673. https://doi.org/10.1007/s40435-024-01411-w
Li, Y., Li, W., & Su, Y. (2019). Study on fluid field and temperature field of large turbo-generator rotor by the method of weak and strong rotational coupling. Beijing Jiaotong Daxue Xuebao/Journal of Beijing Jiaotong University, 43(6), 104–110. https://doi.org/10.11860/j.issn.1673-0291.20190062
Mishra, A. (2024a). Evaluation of TPM adoption factors in manufacturing organizations using fuzzy PIPRECIA method. Journal of Quality in Maintenance Engineering, 30(1), 101–119. https://doi.org/10.1108/JQME-11-2020-0115
Mishra, A. (2024b). Evaluation of TPM adoption factors in manufacturing organizations using fuzzy PIPRECIA method. Journal of Quality in Maintenance Engineering, 30(1), 101–119. https://doi.org/10.1108/JQME-11-2020-0115
Myers, R., DeHart, M., & Kotlyar, D. (2024). Integrated Steady-State System Package for Nuclear Thermal Propulsion Analysis Using Multi-Dimensional Thermal Hydraulics and Dimensionless Turbopump Treatment. Energies, 17(13). https://doi.org/10.3390/en17133068
Nazari, S., Siegel, J., & Stefanopoulou, A. (2019). Optimal Energy Management for a Mild Hybrid Vehicle with Electric and Hybrid Engine Boosting Systems. IEEE Transactions on Vehicular Technology, 68(4), 3386–3399. https://doi.org/10.1109/TVT.2019.2898868
Osenga, M. (2004). Perkins opens Brazilian engine plant. Diesel Progress North American Edition, 70(1), 20–22. https://www.scopus.com/inward/record.uri?eid=2-s2.0-2442623218&partnerID=40&md5=ba4f2835c3f63ae59eb3a266372e134b
Payri, F., MacIán, V., Arrègle, J., Tormos, B., & Martínez, J. (2005a). Heavy-duty diesel engine performance and emission measurements for biodiesel (from cooking oil) blends used in the ECOBUS Project. SAE Technical Papers. https://doi.org/10.4271/2005-01-2205
Payri, F., MacIán, V., Arrègle, J., Tormos, B., & Martínez, J. (2005b). Heavy-duty diesel engine performance and emission measurements for biodiesel (from cooking oil) blends used in the ECOBUS Project. SAE Technical Papers. https://doi.org/10.4271/2005-01-2205
Rathi, S. S., Sahu, M. K., & Kumar, S. (2023). Implementation of Total Productive Maintenance to Improve Productivity of Rolling Mill. Indian Journal of Engineering and Materials Sciences, 30(6), 882–890. https://doi.org/10.56042/ijems.v30i6.3158
Rathi, S. S., Sahu, M. K., & Kumar, S. (2024). Implementation of lean manufacturing methods to improve rolling mill productivity. International Journal of Advanced Technology and Engineering Exploration, 11(111), 243–256. https://doi.org/10.19101/IJATEE.2023.10102004
Riojas-González, H.-H., Reta-Heredia, I., Bortoni-Anzures, L.-J., & Martínez-Torres, J.-J. (2022). Analysis of alcohol mixture in diesel engine. Revista Colombiana de Quimica, 51(3), 34–44. https://doi.org/10.15446/rev.colomb.quim.v51n3.106796
Sgarbi, S. R., & Riese, R. (2000). Introduction of a new line of electronic diesel engines at Maxion international Motores SA. SAE Technical Papers. https://doi.org/10.4271/2000-01-3253
Singh, S., Khamba, J. S., & Singh, D. (2023). Analysis of potential factors affecting execution of overall equipment effectiveness in Indian sugar mills. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237(6), 2323–2333. https://doi.org/10.1177/09544089221135010
Tessaro, J. A., Silva, A. R., Araujo, L. B., & Sardim, R. O. (2017). Supplier Base Optimization on MWM MAR-I Diesel Engines Launch. SAE Technical Papers, 2017-November(November). https://doi.org/10.4271/2017-36-0139
Tortorella, G. L., Saurin, T. A., Fogliatto, F. S., Tlapa Mendoza, D., Moyano-Fuentes, J., Gaiardelli, P., Seyedghorban, Z., Vassolo, R., Cawley Vergara, A. F. M., Sunder M, V., Sreedharan, V. R., Sena, S. A., Forstner, F. F., & Macias de Anda, E. (2024a). Digitalization of maintenance: exploratory study on the adoption of Industry 4.0 technologies and total productive maintenance practices. Production Planning and Control, 35(4), 352–372. https://doi.org/10.1080/09537287.2022.2083996
Tortorella, G. L., Saurin, T. A., Fogliatto, F. S., Tlapa Mendoza, D., Moyano-Fuentes, J., Gaiardelli, P., Seyedghorban, Z., Vassolo, R., Cawley Vergara, A. F. M., Sunder M, V., Sreedharan, V. R., Sena, S. A., Forstner, F. F., & Macias de Anda, E. (2024b). Digitalization of maintenance: exploratory study on the adoption of Industry 4.0 technologies and total productive maintenance practices. Production Planning and Control, 35(4), 352–372. https://doi.org/10.1080/09537287.2022.2083996
Vizcaíno, A., Soto, J. P., García, F., Ruiz, F., & Piattini, M. (2006). Aplicando gestion del conocimiento en el proceso de mantenimiento del software. Inteligencia Artificial, 10(31), 91–98. https://doi.org/10.4114/ia.v10i31.941
Ypma, M., & Streck, R. (1996). Wege zum kostengünstigen EURO II Motor - Am Beispiel des 4.10 TCA von MWM Motores Diesel. MTZ Motortechnische Zeitschrift, 57(7–8), 394–399. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0346095011&partnerID=40&md5=0a0bd1cc774343736d2b59c3140d7e6f
Derechos de autor 2024 Carlos Andrés Gil Duran, William Alfonso Vargas Correa, Brayan Ignacio Cardozo Miranda, Jhonatan Ospina Molina, Ronald González Silva
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.