Modelos y Métodos de Solución en el Balanceo de Líneas de Producción Aplicados en las Organizaciones: Análisis de Literatura Bibliométrica Enfocado al Método de Asignación

Palabras clave: balanceo de línea, asignación, bibliometrix

Resumen

Este estudio analiza la evolución de los métodos de balanceo de líneas de producción (ABLP) en la industria manufacturera, combinando un análisis bibliométrico con una revisión de la literatura. Desde enfoques tradicionales, como heurísticas y programación lineal, los métodos han avanzado hacia algoritmos genéticos, optimización multiobjetivo e inteligencia artificial, integrando estas técnicas para facilitar su implementación. Se examina la creciente adopción de principios de la Industria 5.0, como la colaboración humano-robot, y su impacto en el modelado del balanceo de líneas. En sectores donde la mano de obra humana sigue siendo crucial, los métodos de “asignación”  ofrecen soluciones específicas, considerando las competencias individuales de los operarios. Además, se subraya un énfasis en la sostenibilidad, incluyendo el reciclaje mediante líneas de desensamble, la reducción del impacto ambiental y la mejora de las condiciones ergonómicas. A pesar de los avances, persisten retos significativos, como la integración de restricciones del mundo real en modelos matemáticos y la gestión de la dinámica natural en las líneas de desensamble. Los hallazgos destacan la necesidad de seguir innovando en técnicas de balanceo que respondan a las demandas de la manufactura moderna, manteniendo el compromiso con la sostenibilidad y la asignación de tareas de acuerdo con las competencias de cada trabajador.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abdous, M., Delorme, X., Battini, D., & Berger-Douce, S. (2022). Multi-objective collaborative assembly line design problem with the optimisation of ergonomics and economics. International Journal Of Production Research, 61(22), 7830-7845.

https://doi.org/10.1080/00207543.2022.2153185.

Abdous, M., Delorme, X., Battini, D., Sgarbossa, F., & Berger-Douce, S. (2022). Assembly line balancing problem with ergonomics: a new fatigue and recovery model. International Journal Of Production Research, 61(3), 693-706. https://doi.org/10.1080/00207543.2021.2015081

Aksnes, D. W., Langfeldt, L., & Wouters, P. (2019). Citations, Citation Indicators, and Research Quality: An Overview of Basic Concepts and Theories. SAGE Open, 9(1), 215824401982957. https://doi.org/10.1177/2158244019829575

Altekin, F. T., Kandiller, L., & Ozdemirel, N. E. (2008). Profit-oriented disassembly-line balancing. International Journal Of Production Research, 46(10), 2675-2693.

https://doi.org/10.1080/00207540601137207

Alvarado, R. U. (2016). El crecimiento de la literatura sobre la ley de Bradford. Investigación Bibliotecológica Archivonomía Bibliotecología E Información, 30(68), 51-72.

https://doi.org/10.1016/j.ibbai.2016.02.003.

Araújo, F. F., Costa, A. M., & Miralles, C. (2012). Two extensions for the ALWABP: Parallel stations and collaborative approach. International Journal Of Production Economics, 140(1), 483-495.

https://doi.org/10.1016/j.ijpe.2012.06.032.

Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal Of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007.

Askin, R. G., & Zhou, M. (1997). A parallel station heuristic for the mixed-model production line balancing problem. International Journal of Production Research, 35(11), 3095–3106. https://doi.org/10.1080/002075497194309.

Avikal, S., Mishra, P., & Jain, R. (2013). A Fuzzy AHP and PROMETHEE method-based heuristic for disassembly line balancing problems. International Journal Of Production Research, 52(5), 1306-1317. https://doi.org/10.1080/00207543.2013.831999

Battaïa, O., & Dolgui, A. (2011). Reduction approaches for a generalized line balancing problem. Computers & Operations Research, 39(10), 2337-2345.

https://doi.org/10.1016/j.cor.2011.11.022.

Baykasoglu, A. (2006). Multi-rule Multi-objective Simulated Annealing Algorithm for Straight and U Type Assembly Line Balancing Problems. Journal Of Intelligent Manufacturing, 17(2), 217-232. https://doi.org/10.1007/s10845-005-6638-y

Becker, C., & Scholl, A. (2004). A survey on problems and methods in generalized assembly line balancing. European Journal Of Operational Research, 168(3), 694-715. https://doi.org/10.1016/j.ejor.2004.07.023

Bilir, Y. E., Dişbudak, B., Aydın, O., Demirhisar, E., Koçak, B. S., Durğay, Y., Akkaya, S. B., & Gökçe, M. A. (2023). Assembly Line and Workload Balancing with Competency-Based Worker Assignment in Apparel Production. En Lecture notes in mechanical engineering (pp. 737-748). https://doi.org/10.1007/978-3-031-24457-5_58

Borgohain, D. J., Verma, M. K., Nazim, M., & Sarkar, M. (2021b). Application of Bradford’s law of scattering and Leimkuhler model to information science literature. Collnet Journal Of Scientometrics And Information Management, 15(1), 197-212.

https://doi.org/10.1080/09737766.2021.1943041

Boysen, N., Schulze, P., & Scholl, A. (2021). Assembly line balancing: What happened in the last fifteen years? European Journal Of Operational Research, 301(3), 797-814. https://doi.org/10.1016/j.ejor.2021.11.043

Campana, N. P., Iori, M., & Moreira, M. C. O. (2021). Mathematical models and heuristic methods for the assembly line balancing problem with hierarchical worker assignment. International Journal Of Production Research, 60(7), 2193-2211.

https://doi.org/10.1080/00207543.2021.1884767.

Cruz Manzo, J., Bolaños González, F. F., Ortuño Barba, L. C., Villafuerte Palavicini, F. S., & Áraoz Baltazar, I. (2024). Bibliometría del Uso del Blockchain en la Economía Circular: Decisión Hacia la Sostenibilidad. Ciencia Latina Revista Científica Multidisciplinar, 8(5), 9165–9180. https://doi.org/10.37811/cl_rcm.v8i5.14304

Chiang, W., Kouvelis, P., & Urban, T. L. (2007). Line balancing in a just-in-time production environment: balancing multiple U-lines. IIE Transactions, 39(4), 347-359.

https://doi.org/10.1080/07408170600838340

Dimopoulos, C., & Zalzala, A. (2000). Recent developments in evolutionary computation for manufacturing optimization: problems, solutions, and comparisons. IEEE Transactions On Evolutionary Computation, 4(2), 93-113. https://doi.org/10.1109/4235.850651

Ding, L., Feng, Y., Tan, J., & Gao, Y. (2010). A new multi-objective ant colony algorithm for solving the disassembly line balancing problem. The International Journal Of Advanced Manufacturing Technology, 48(5-8), 761-771. https://doi.org/10.1007/s00170-009-2303-5

Dolgui, A., & Proth, J. (2010). Supply Chain Engineering. En Springer eBooks.

https://doi.org/10.1007/978-1-84996-017-5

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal Of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070

Egghe, L., & Rousseau, R. (1990). Introduction to Informetrics. Quantitative Methods in Library, Documentation and Information Science. Document Server@UHasselt.

http://hdl.handle.net/1942/587.

Aguirre Chávez, J. F., Franco Gallegos, L. I., Ivett Robles Hernández, G. S., & Montes Mata, K. J. (2024). Impacto de la Actividad Física en la Prevención y Tratamiento de la Obesidad: Una Revisión Sistemática. Estudios Y Perspectivas Revista Científica Y Académica , 4(2), 87–110. https://doi.org/10.61384/r.c.a.v4i2.199

Granados Flores, A. A., Arriola Ríos, D. I., & González Soto, J. R. (2024). Lesiones de Tendones Extensores: Luxaciones de Tendones Extensores en Zona V. Revisión bibliográfica . Revista Científica De Salud Y Desarrollo Humano, 5(1), 313–324. https://doi.org/10.61368/r.s.d.h.v5i1.94

Tiboni Kaiut, R. K., Spercoski Kaiut, A. F., & Agrela Rodrigues, F. de A. (2024). Vida Longeva: Criando Hábitos para Envelhecer com Saúde. Emergentes - Revista Científica, 4(1), 368–380. https://doi.org/10.60112/erc.v4i1.116

López, C., & Rivera, M. (2023). Control de Enfermería en Personas con Diabetes Gestacional en Embarazadas de la Argentina. Revista Veritas De Difusão Científica, 4(2), 88–101. https://doi.org/10.61616/rvdc.v4i2.48

Fernández C., F. (2024). Determinación De Erodabilidad En Áreas De Influencia Cuenca Poopo Región Andina De Bolivia. Horizonte Académico, 4(4), 63–78. Recuperado a partir de https://horizonteacademico.org/index.php/horizonte/article/view/19

Medina Nolasco, E. K., Mendoza Buleje, E. R., Vilca Apaza, G. R., Mamani Fernández, N. N., & Alfaro Campos, K. (2024). Tamizaje de cáncer de cuello uterino en mujeres de una región Andina del Perú. Arandu UTIC, 11(1), 50–63. https://doi.org/10.69639/arandu.v11i1.177

Da Silva Santos , F., & López Vargas , R. (2020). Efecto del Estrés en la Función Inmune en Pacientes con Enfermedades Autoinmunes: una Revisión de Estudios Latinoamericanos. Revista Científica De Salud Y Desarrollo Humano, 1(1), 46–59. https://doi.org/10.61368/r.s.d.h.v1i1.9

Gamberini, R., Grassi, A., & Rimini, B. (2005). A new multi-objective heuristic algorithm for solving the stochastic assembly line re-balancing problem. International Journal Of Production Economics, 102(2), 226-243. https://doi.org/10.1016/j.ijpe.2005.02.013

Ghosh, S., & Gagnon, R. J. (1989). A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems. International Journal Of Production Research, 27(4), 637-670. https://doi.org/10.1080/00207548908942574

Gonçalves, J. F., & de Almeida, J. R. (2002). Journal of Heuristics, 8(6), 629–642.

https://doi.org/10.1023/a:1020377910258

Guo, J., Li, Y., Du, B., & Wang, K. (2023). Multi-objective fuzzy partial disassembly line balancing considering preventive maintenance scenarios using enhanced hybrid artificial bee colony algorithm. Expert Systems With Applications, 237, 121681.

https://doi.org/10.1016/j.eswa.2023.121681

Janardhanan, M. N., Li, Z., Nielsen, P., & Tang, Q. (2017). Artificial bee colony algorithms for two-sided assembly line worker assignment and balancing problem. En Advances in intelligent systems and computing (pp. 11-18). https://doi.org/10.1007/978-3-319-62410-5_2.

Kalayci, C. B., & Gupta, S. M. (2013). A particle swarm optimization algorithm with neighborhood-based mutation for sequence-dependent disassembly line balancing problem. The International Journal Of Advanced Manufacturing Technology, 69(1-4), 197-209.

https://doi.org/10.1007/s00170-013-4990-1

Kalayci, C. B., Polat, O., & Gupta, S. M. (2014). A hybrid genetic algorithm for sequence-dependent disassembly line balancing problem. Annals Of Operations Research, 242(2), 321-354. https://doi.org/10.1007/s10479-014-1641-3

Katiraee, N., Calzavara, M., Finco, S., Battaïa, O., & Battini, D. (2022). Assembly line balancing and worker assignment considering workers’ expertise and perceived physical effort. International Journal Of Production Research, 61(20), 6939-6959.

https://doi.org/10.1080/00207543.2022.2140219

Kheirabadi, M., Keivanpour, S., Chinniah, Y. A., & Frayret, J. (2023). Human-robot collaboration in assembly line balancing problems: Review and research gaps. Computers & Industrial Engineering, 186, 109737. https://doi.org/10.1016/j.cie.2023.109737.

Kottas, J. F., & Lau, H. (1973). A Cost-Oriented Approach to Stochastic Line Balancing1. A I I E Transactions, 5(2), 164-171. https://doi.org/10.1080/05695557308974897.

Lalaoui, M., & Afia, A. E. (2019). A versatile generalized simulated annealing using type-2 fuzzy controller for the mixed-model assembly line balancing problem. IFAC-PapersOnLine, 52(13), 2804-2809. https://doi.org/10.1016/j.ifacol.2019.11.633

Lee, T. O., Kim, Y., & Kim, Y. K. (2001). Two-sided assembly line balancing to maximize work relatedness and slackness. Computers & Industrial Engineering, 40(3), 273-292.

https://doi.org/10.1016/s0360-8352(01)00029-8

Levitin, G., Rubinovitz, J., & Shnits, B. (2002). A GENETIC ALGORITHM FOR ROBOTIC ASSEMBLY LINE BALANCING. IFAC Proceedings Volumes, 35(1), 79-84.

https://doi.org/10.3182/20020721-6-es-1901.00016

Li, Z., Tang, Q., & Zhang, L. (2016). Minimizing energy consumption and cycle time in two-sided robotic assembly line systems using restarted simulated annealing algorithm. Journal Of Cleaner Production, 135, 508-522. https://doi.org/10.1016/j.jclepro.2016.06.131.

Liang, J., Guo, S., Du, B., Li, Y., Guo, J., Yang, Z., & Pang, S. (2020b). Minimizing energy consumption in multi-objective two-sided disassembly line balancing problem with complex execution constraints using dual-individual simulated annealing algorithm. Journal Of Cleaner Production, 284, 125418. https://doi.org/10.1016/j.jclepro.2020.125418

Liu, J., Zhou, Z., Pham, D. T., Xu, W., Ji, C., & Liu, Q. (2019). Collaborative optimization of robotic disassembly sequence planning and robotic disassembly line balancing problem using improved discrete Bees algorithm in remanufacturing✰. Robotics And Computer-Integrated Manufacturing, 61, 101829. https://doi.org/10.1016/j.rcim.2019.101829

Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal Of The Washington Academy Of Sciences, 16(12). http://patterns.architexturez.net/doc/az-cf-173015.

Mongeon, P., & Paul-Hus, A. (2015). The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics, 106(1), 213-228. https://doi.org/10.1007/s11192-015-1765-5.

Moreira, M. C. O., Ritt, M., Costa, A. M., & Chaves, A. A. (2012). Simple heuristics for the assembly line worker assignment and balancing problem. Journal Of Heuristics, 18(3), 505-524.

https://doi.org/10.1007/s10732-012-9195-5

Mura, M. D., & Dini, G. (2019). Designing assembly lines with humans and collaborative robots: A genetic approach. CIRP Annals, 68(1), 1-4. https://doi.org/10.1016/j.cirp.2019.04.006

Otto, A., & Scholl, A. (2011). Incorporating ergonomic risks into assembly line balancing. European Journal Of Operational Research, 212(2), 277-286. https://doi.org/10.1016/j.ejor.2011.01.056

Pan, Y., & Li, H. (2016). Sustainability evaluation of end-of-life vehicle recycling based on emergy analysis: a case study of an end-of-life vehicle recycling enterprise in China. Journal Of Cleaner Production, 131, 219-227. https://doi.org/10.1016/j.jclepro.2016.05.045

Pilati, F., Ferrari, E., Gamberi, M., & Margelli, S. (2021). Multi-Manned Assembly Line Balancing: Workforce Synchronization for Big Data Sets through Simulated Annealing. Applied Sciences, 11(6), 2523. https://doi.org/10.3390/app11062523

Qin, S., Li, J., Wang, J., Guo, X., Liu, S., & Qi, L. (2023). A Salp Swarm Algorithm for Parallel Disassembly Line Balancing Considering Workers With Government Benefits. IEEE Transactions On Computational Social Systems, 11(1), 282-291.

https://doi.org/10.1109/tcss.2023.3238965

Sabar, M. (2014). Multi-agent Approach for Personnel Scheduling and Rescheduling in Assembly Centers. En Lecture notes in computer science (pp. 345-354). https://doi.org/10.1007/978-3-662-44739-0_42.

Sikora, C. G. S., & Weckenborg, C. (2022). Balancing of assembly lines with collaborative robots: comparing approaches of the Benders’ decomposition algorithm. International Journal Of Production Research, 61(15), 5117-5133. https://doi.org/10.1080/00207543.2022.2093684

Sternatz, J. (2013). Enhanced multi-Hoffmann heuristic for efficiently solving real-world assembly line balancing problems in automotive industry. European Journal Of Operational Research, 235(3), 740-754. https://doi.org/10.1016/j.ejor.2013.11.005.

Stroieke, R. E., Fogliatto, F. S., & Anzanello, M. J. (2013). Estado da arte das aplicações de curvas de aprendizado. Gestão & Produção, 20(3), 681-694. https://doi.org/10.1590/s0104-530x2013000300013.

Talbot, F. B., Patterson, J. H., & Gehrlein, W. V. (1986). A Comparative Evaluation of Heuristic Line Balancing Techniques. Management Science, 32(4), 430-454.

https://doi.org/10.1287/mnsc.32.4.430

Trost, M., Claus, T., & Herrmann, F. (2022a). Social Sustainability in Production Planning: A Systematic Literature Review. Sustainability, 14(13), 8198.

https://doi.org/10.3390/su14138198

Valderrama-Zurián, J. C., Aguilar-Moya, R., Melero-Fuentes, D., & Aleixandre-Benavent, R. (2015). A systematic analysis of duplicate records in Scopus. Journal Of Informetrics, 9(3), 570-576. https://doi.org/10.1016/j.joi.2015.05.002.

Van Eck, N. J., & Waltman, L. (2009). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3

Vickery, B. (1948). BRADFORD’S LAW OF SCATTERING. Journal Of Documentation, 4(3), 198-203. https://doi.org/10.1108/eb026133

Weckenborg, C., Kieckhäfer, K., Müller, C., Grunewald, M., & Spengler, T. S. (2019). Balancing of assembly lines with collaborative robots. BuR - Business Research, 13(1), 93-132.

https://doi.org/10.1007/s40685-019-0101-y.

Zavadlav, E., McClain, J. O., & Thomas, L. J. (1996). Self-Buffering, Self-Balancing, Self-Flushing production lines. Management Science, 42(8), 1151-1164.

https://doi.org/10.1287/mnsc.42.8.1151.

Zhang, Z., Chica, M., Tang, Q., Li, Z., & Zhang, L. (2023). A multi-objective co-evolutionary algorithm for energy and cost-oriented mixed-model assembly line balancing with multi-skilled workers. Expert Systems With Applications, 236, 121221.

https://doi.org/10.1016/j.eswa.2023.121221.

Publicado
2024-12-26
Cómo citar
Araoz Baltazar , I., Guevara Ramírez, I., Medina, O. D. A., Cruz Manzo, J., & Martínez Zárate , I. (2024). Modelos y Métodos de Solución en el Balanceo de Líneas de Producción Aplicados en las Organizaciones: Análisis de Literatura Bibliométrica Enfocado al Método de Asignación. Ciencia Latina Revista Científica Multidisciplinar, 8(6), 3873-3907. https://doi.org/10.37811/cl_rcm.v8i6.15132
Sección
Ciencias Sociales y Humanas