Impact of AI on Virtual Learning: Self-Sufficiency and Academic Confidence in University Students

Palabras clave: artificial intelligence, education, teaching, anxiety, learning

Resumen

This article examines the impact of artificial intelligence (AI) on students' ability to work independently in online university courses. With the growing integration of AI tools in higher education, concerns have emerged regarding their influence on students' self-reliance in completing academic tasks. A survey of students at Central University of Ecuador was conducted to assess the use of AI tools and their perspectives on academic autonomy. The study employs both quantitative and qualitative methods to explore how AI can enhance personalized learning experiences, while also potentially fostering over-reliance, which may impair students' abilities to independently write and solve problems. Initial findings suggest a correlation between heavy dependence on AI and diminished confidence in task completion without technological aid. Preliminary results also indicate that while AI can enhance inclusivity and accessibility in education, it may simultaneously contribute to increased anxiety and social isolation.

Descargas

La descarga de datos todavía no está disponible.

Citas

Acosta-Enríquez, A., Zhi, Y., & Wang, L. (2024). Impacto de la inteligencia artificial en el aprendizaje y la ansiedad de los estudiantes. Revista de Educación y Tecnología, 12(3), 45-67.

Adlawan, J. (2023). La percepción de los estudiantes sobre el uso de IA en la educación superior. Educación y Sociedad, 15(2), 123-139.

Alavi, S., & Leidner, D.E. (2001). Review: Technology-mediated learning: A call for greater depth and breadth of research. Information Systems Research, 12(1), 1-10.

Brown, A., & Green, T. (2020). AI in education: The impact on student autonomy and confidence. Journal of Educational Technology Systems, 48(2), 150-165.

Chen, L., & Zhao, Y. (2021). Artificial intelligence and its implications for higher education: A systematic review. Computers & Education, 162, Article 104108.

Dabbagh, N., & Kitsantas, A. (2012). Personal learning environments: Self-regulated learning in the digital age. The International Review of Research in Open and Distributed Learning, 13(2), 1-24.

Ghafouri, M. (2024). Dependencia tecnológica y habilidades interpersonales en estudiantes universitarios. Revista Internacional de Psicología Educativa, 8(1), 30-50.

Hwang, G.J., & Chang, H.F. (2019). Innovative mobile learning approach to improve students’ self-regulated learning in flipped classrooms: A case study in a higher education context. Computers & Education, 142, Article 103646.

Johnson, M., & Smith, R. (2022). The effects of AI on student engagement and learning outcomes in online courses. Journal of Online Learning Research, 8(3), 45-63.

Kizilcec, R.F., & Schneider, E.F. (2015). Motivation as a lens to understand online learning in higher education: A systematic review of the literature on motivation in online learning environments. Educational Psychology Review, 27(4), 703-733.

Lin, C.H., & Chen, C.H. (2020). The impact of artificial intelligence on student engagement and academic performance in higher education: A meta-analysis study. Computers in Human Behavior, 105, Article 106205.

McCoy, L.P., & Theis, J.A. (2018). The impact of artificial intelligence on student learning outcomes: A systematic review of the literature from the past decade. Journal of Educational Computing Research, 56(5), 719-743.

Monge Vera, J., Villamagua Jiménez, R., Aroca Izurieta, J., & Chico Guzmán, C. (2024). La personalización del aprendizaje mediante IA: un enfoque inclusivo. Journal of Educational Research, 22(4), 78-90.

Mungarro-Matus, J. E., & Mada-Loreto, R. (2024). Mercado de trabajo de personas instructoras de Actividades Rítmicas Masivas en Hermosillo, México. Estudios Y Perspectivas Revista Científica Y Académica , 4(1), 350–367. https://doi.org/10.61384/r.c.a.v4i1.103

Avila, E., Ávila Romano , R., & Fabiano de Abreu Agrela Rodrigues. (2024). Como retardar o envelhecimento cerebral: Uma análise neurocientífica. Revista Científica De Salud Y Desarrollo Humano, 5(1), 84–95. https://doi.org/10.61368/r.s.d.h.v5i1.76

Mungarro-Matus, J. E., & Mada-Loreto, R. (2024). Mercado de trabajo de personas instructoras de Actividades Rítmicas Masivas en Hermosillo, México. Estudios Y Perspectivas Revista Científica Y Académica , 4(1), 350–367. https://doi.org/10.61384/r.c.a.v4i1.104

Fernández C., F. (2024). Determinación De Erodabilidad En Áreas De Influencia Cuenca Poopo Región Andina De Bolivia. Horizonte Académico, 4(4), 63–78. Recuperado a partir de https://horizonteacademico.org/index.php/horizonte/article/view/19

Medina Nolasco, E. K., Mendoza Buleje, E. R., Vilca Apaza, G. R., Mamani Fernández, N. N., & Alfaro Campos, K. (2024). Tamizaje de cáncer de cuello uterino en mujeres de una región Andina del Perú. Arandu UTIC, 11(1), 50–63. https://doi.org/10.69639/arandu.v11i1.177

Da Silva Santos , F., & López Vargas , R. (2020). Efecto del Estrés en la Función Inmune en Pacientes con Enfermedades Autoinmunes: una Revisión de Estudios Latinoamericanos. Revista Científica De Salud Y Desarrollo Humano, 1(1), 46–59. https://doi.org/10.61368/r.s.d.h.v1i1.9

Popenici, S.A.D., & Kerr, S.T. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education: A systematic review of the literature from the past decade. Educational Technology Research and Development, 65(6), 1419-1440.

Rodríguez-García, M., Pérez-Sanagustín, M., & González-Sánchez, J. (2021). Preparación de los estudiantes para el mercado laboral mediante herramientas de IA. Revista de Innovación Educativa, 10(2), 200-215.

Selwyn, N., & Facer, K.(2013). The ethics of using technology in education: A critical perspective on the role of technology in shaping educational futures.British Journal of Educational Technology,44(3),345-358.

Siemens, G.(2014). Learning analytics: The emergence of a new field.International Journal of Analytics and Learning Technologies,6(1),1-10.

Tsai, C.C., & Chai, C.S.(2012). The development of a scale for measuring teachers’ beliefs about technology integration into teaching.Computers & Education,59(2),243-253.

Wang, Y., & Liu, X. (2023). Exploring the relationship between AI usage and academic performance among university students. Educational Technology Research and Development, 71(1), 99-115.

Zhang, Y., & Wang, L.(2020). The role of artificial intelligence in personalized learning: A review of recent developments.Journal of Educational Technology Systems,49(3),287-305.

Publicado
2025-01-14
Cómo citar
Rodríguez Bermeo , S. D., Lorena Salazar, M., Parra Terán, F. F., Maldonado Calero, J. C., & Albuja Centeno, V. J. (2025). Impact of AI on Virtual Learning: Self-Sufficiency and Academic Confidence in University Students. Ciencia Latina Revista Científica Multidisciplinar, 8(6), 7414-7429. https://doi.org/10.37811/cl_rcm.v8i6.15432
Sección
Ciencias de la Educación