Análisis de la Simulación Numérica de una Turbina de Pequeña Escala para Tuberías de Agua Variando el Número de Álabes

Palabras clave: energía hidráulica, turbinas tipo savonius, dinámica de fluidos computacional (CFD), diseño de turbinas

Resumen

El aprovechamiento de la energía hidráulica en sistemas de tuberías representa una alternativa eficiente y sostenible para generar electricidad a pequeña escala. En este contexto, las turbinas tipo Savonius son una opción para la obtención de energía en tuberías de redes de distribución de agua, ya que convierten la energía cinética del agua en energía mecánica o eléctrica, siendo ideales para espacios confinados y comunidades con recursos limitados. En este estudio, se simuló el efecto del número de álabes en la velocidad del flujo usando Dinámica de Fluidos Computacional (CFD, por sus siglas en ingles) en condiciones de estado permanente, variando de 2 a 12 álabes. Los resultados indican que las turbinas con menor número de álabes logran mayores velocidades máximas del fluido, pero generan extensas áreas con velocidades negativas, pudiendo reducir su eficiencia. La turbina con seis álabes mostró un equilibrio óptimo entre velocidades axiales positivas y negativas, destacando como la configuración que podría ser más eficiente. Estos hallazgos contribuyen al diseño de turbinas más efectivas para aplicaciones específicas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abdullah, M. F., Jauhari, I., Mohd Sabri, M. F., & Nik Ghazali, N. N. (2021). A Novel Vertical Axis Parallel Turbines System for In-pipe Hydropower Generation: Conceptual Design and Preliminary Experiment. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2021.1880501

Breeze, P. (2019). Power generation technologies. https://doi.org/10.1016/C2012-0-00136-6.

Chen, H., Kan, K., Wang, H., Binama, M., Zheng, Y., & Xu, H. (2021). Development and Numerical Performance Analysis of a Micro Turbine in a Tap-Water Pipeline. Sustainability, 13(19), 10755. https://doi.org/10.3390/su131910755.

Das, G. (2015). Advantages of green technology. International Journal of Research - GRANTHAALAYAH, 3(9), 1-5. https://doi.org/10.29121/granthaalayah.v3.i9SE.2015.3121

Hamlehdar, M., Yousefi, H., Noorollahi, Y., & Mohammadi, M. (2022). Energy recovery from water distribution networks using micro hydropower: A case study in Iran. Energy, 252, 124024. https://doi.org/10.1016/j.energy.2022.124024

Hamzah, I., Prasetyo, A., Tjahjana, D. D. D. P., & Hadi, S. (2018). Effect of blades number to performance of Savonius water turbine in water pipe. AIP Conference Proceedings, 1931, 030046-1–030046-4. https://doi.org/10.1063/1.5024105

Hasanzadeh, N., Payambarpour, S. A., Najafi, A. F., & Magagnato, F. (2021). Investigation of in-pipe drag-based turbine for distributed hydropower harvesting: Modeling and optimization. Journal of Cleaner Production, 298, 126710. https://doi.org/10.1016/j.jclepro.2021.126710

IRENA. Renewable Energy Statistics 2020, (2020). Available online: https://www.irena.org/publications/2020/Mar/Renewable-Capacity-Statistics-2020

Junejo, F., Saeed, A., & Hameed, S. (2018). 5.19 Energy Management in Ocean Energy Systems. Comprehensive Energy Systems, 5, 778-807. https://doi.org/10.1016/B978-0-12-809597-3.00539-3

Kumar, A., & Saini, R. P. (2017). Performance analysis of a Savonius hydrokinetic turbine having twisted blades. Renewable Energy, 108, 502–522. https://doi.org/10.1016/j.renene.2017.03.006

Lahamornchaiyakul, W., & Kasayapanand, N. (2023). The Design and Analysis of a Novel Vertical Axis Small Water Turbine Generator for Installation in Drainage Lines. International Journal of Renewable Energy Development, 12(2), 235–246. https://doi.org/10.14710/ijred.2023.48388

Lahamornchaiyakul, W. (2024). Numerical simulation of a novel small water turbine generator for installation in a deep-flow hydroponics system. International Journal of Renewable Energy Development, 13(1), 88–98. https://doi.org/10.14710/ijred.2024.58247

Ma, T., Yang, H., Guo, X., Lou, C., Shen, Z., Chen, J., & Du, J. (2018). Development of inline hydroelectric generation system from municipal water pipelines. Energy, 144, 535-548. https://doi.org/10.1016/j.energy.2017.11.113

Mutlu, Y., & Çakan, M. (2018). Evaluation of in-pipe turbine performance for turbo solenoid valve system. Engineering Applications of Computational Fluid Mechanics, 12(1), 625-634. https://doi.org/10.1080/19942060.2018.1506364

Patel, V., & Patel, C. (2021). Performance investigation of twisted blade inline Savonius turbine at variable load condition using numerical method. Materials Today: Proceedings, 49, 250–256. https://doi.org/10.1016/j.matpr.2021.01.868

Payambarpour, S. A., & Najafi, A. F. (2020). Experimental and numerical investigations on a new developed Savonius turbine for in-pipe hydro application. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 234(2), 195-210. https://doi.org/10.1177/0957650919854

Payambarpour, S. A., & Najafi, A. F. (2020). Experimental and numerical investigations on a new developed Savonius turbine for in-pipe hydro application. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 234(2), 195–210. https://doi.org/10.1177/0957650919854583

Payambarpour, S. A., Najafi, A. F., & Magagnato, F. (2019). Investigation of Blade Number Effect on Hydraulic Performance of In-Pipe Hydro Savonius Turbine. International Journal of Rotating Machinery, 394191. https://doi.org/10.1155/2019/8394191

Samora, I., Hasmatuchi, V., Münch-Alligné, C., Franca, M. J., Schleiss, A. J., & Ramos, H. M. (2016). Experimental characterization of a five blade tubular propeller turbine for pipe inline installation. Renewable Energy, 95, 356-366. https://doi.org/10.1016/j.renene.2016.04.023

Sthel, M. S., Tostes, J. G., & Tavares, J. R. (2013). Current energy crisis and its economic and environmental consequences: Intense human cooperation Natural Science, 5(2), 244-252. http://dx.doi.org/10.4236/ns.2013.52A036

Talha, M., Saeed, A., Jaffer, M., Khan, H. Y., Haider, A., & Ali, W. (2020). Design and analysis of inline pipe turbine. 3C Tecnología. Glosas de innovación aplicadas a la pyme. Edición Especial, Abril 2020, 6373. http://doi.org/10.17993/3ctecno.2020.specialissue5.63-73

Titus, J., & Ayalur, B. (2019). Design and fabrication of in-line turbine for pico hydro energy recovery in treated sewage water distribution line. Energy Procedia, 156, 133-138. https://doi.org/10.1016/j.egypro.2018.11.117

Yao, Y., Shen, Z., Wang, Q., Du, J., Lu, L., & Yang, H. (2023). Development of an inline bidirectional micro crossflow turbine for hydropower harvesting from water supply pipelines. Applied Energy, 329, 120263. https://doi.org/10.1016/j.apenergy.2022.120263

Yeo, H., Seok, W., Shin, S., Huh, Y. C., Jung, B. C., Myung, C. S., & Rhee, S. H. (2019). Computational analysis of the performance of a vertical axis turbine in a water pipe. Energies, 12(20), 3998. https://doi.org/10.3390/en12203998

Publicado
2025-02-17
Cómo citar
Chagolla Aranda, M. A., Moreno Carpintero, E. de J., Rosado Tamariz, E., Campos Amezcua, R., Chagolla Gaona, M. A., Abúndez Pliego, A., & Hernández Ramírez, K. (2025). Análisis de la Simulación Numérica de una Turbina de Pequeña Escala para Tuberías de Agua Variando el Número de Álabes. Ciencia Latina Revista Científica Multidisciplinar, 9(1), 3863-3874. https://doi.org/10.37811/cl_rcm.v9i1.16125
Sección
Ciencias y Tecnologías

Artículos más leídos del mismo autor/a