Flotation of a mineralized structure to decrease arsenic content in gold concentrate
Resumen
Arsenic is a penalty element in flotation concentrates, thus decreasing their quality. Consequently, the present investigation is developed with the objective of carrying out the flotation of a mineralized structure to reduce the content of arsenic “As” in the gold concentrate “Au”. For this purpose, sampling was carried out in a vetiform hydrothermal deposit taking 2 kg for Au-As chemical and mineralogical analysis and two flotation tests in a Rougher stage with the same entry conditions, i.e. Au grade equal to 11.46 g/t and As 1.81%. The results indicate that in test 1 the As content in the concentrate was 4.57%, while in test 2 the As grade in the concentrate was 4.86%, considering that in the latter, in addition to the reagents used in test 1, copper sulfate was applied as an activator, where no sulfide depression was evidenced. Finally, it is concluded that with the experimentation developed, the mineral presented a positive response to the flotation process, achieving the expected result with trial 1, also taking into account the dosage of the reagents used.
Descargas
Citas
Abashina, T., Yachkula, A., Shaikin, A., & Vainshtein, M. (2024). Approaches to Improve the Bioleaching of Arsenopyrite Flotation Concentrate with Acidithiobacillus ferrooxidans: A Comparison of Two Strains of Different Origin. Engineering Proceedings, 67(1), 60.
https://doi.org/10.3390/ENGPROC2024067060
Akopova, T. A., Demina, T. S., Khavpachev, M. A., Popyrina, T. N., Grachev, A. V., Ivanov, P. L., & Zelenetskii, A. N. (2021). Hydrophobic modification of chitosan via reactive solvent-free extrusion. Polymers, 13(16), 2807. https://doi.org/10.3390/polym13162807
Azizi, A., Masdarian, M., Hassanzadeh, A., Bahri, Z., Niedoba, T., & Surowiak, A. (2020). Parametric optimization in rougher flotation performance of a sulfidized mixed copper ore. Minerals, 10(8), 1–19. https://doi.org/10.3390/min10080660
Batjargal, K., Guven, O., Ozdemir, O., Karakashev, S. I., Grozev, N. A., Boylu, F., & Çelik, M. S. (2023). Frothing Performance of Frother-Collector Mixtures as Determined by Dynamic Foam Analyzer and Its Implications in Flotation. Minerals, 13(2), 242.
https://doi.org/10.3390/min13020242
Beniwal, R., Yadav, R., & Ramakrishna, W. (2023). Multifarious Effects of Arsenic on Plants and Strategies for Mitigation. Agriculture, 13(2), 401. https://doi.org/10.3390/agriculture13020401
Bhat, A., Ravi, K., Tian, F., & Singh, B. (2024). Arsenic Contamination Needs Serious Attention: An Opinion and Global Scenario. Pollutants, 4(2), 196–211.
https://doi.org/10.3390/pollutants4020013
Castellón, C. I., Toro, N., Gálvez, E., Robles, P., Leiva, W. H., & Jeldres, R. I. (2022). Froth Flotation of Chalcopyrite/Pyrite Ore: A Critical Review. Materials, 15(19), 6536.
https://doi.org/10.3390/ma15196536
Chen, X., Bai, J., Zhang, Z., Qiang, W., Huang, S., Ouyang, Y., Liu, T., & Yin, W. (2023). The Flotation Separation Mechanism of Smithsonite from Calcite and Dolomite with Combined Collectors. Minerals, 13(12), 1527. https://doi.org/10.3390/min13121527
Ciopec, M., Biliuta, G., Negrea, A., Duțeanu, N., Coseri, S., Negrea, P., & Ghangrekar, M. (2021). Testing of chemically activated cellulose fibers as adsorbents for treatment of arsenic contaminated water. Materials, 14(13), 3731. https://doi.org/10.3390/ma14133731
Crowther, D., & Lauesen, L. M. (2017). Quantitative methods. In Handbook of Research Methods in Corporate Social Responsibility (pp. 107–109). Springer, Cham.
https://doi.org/10.4135/9781526435897.n35
Dosmukhamedov, N., Kaplan, V., Zholdasbay, E., Argyn, A., Kuldeyev, E., Koishina, G., & Tazhiev, Y. (2022). Chlorination Treatment for Gold Extraction from Refractory Gold-Copper-Arsenic-Bearing Concentrates. Sustainability, 14(17), 11019. https://doi.org/10.3390/su141711019
Evdokimov, S. I., Golikov, N. S., Pryalukhin, A. F., Kondratiev, V. V., Mishedchenko, A., Kuzina, A. V., Bryukhanova, N. N., & Karlina, A. I. (2024). Studying Flotation of Gold Microdispersions with Carrier Minerals and Pulp Aeration with a Steam–Air Mixture. Minerals, 14(1), 108. https://doi.org/10.3390/min14010108
Forson, P., Skinner, W., & Asamoah, R. (2023). Investigating the selective flotation of auriferous arsenian pyrite from refractory ores using thionocarbamate. Powder Technology, 426, 118649. https://doi.org/10.1016/j.powtec.2023.118649
Hamilton, D., Chang, W., & McPhedran, K. N. (2024). Establishing an optimized flotation scheme for a complex Base-Metal sulfide ore using a modified xanthate reagent scheme. Minerals Engineering, 216, 108873. https://doi.org/10.1016/j.mineng.2024.108873
Hassanzadeh, A., Gungor, E., Samet, E., Durunesil, D., Hoang, D. H., & Vinnett, L. (2024). ImhoflotTM Flotation Cell Performance in Mini-Pilot and Industrial Scales on the Acacia Copper Ore. Minerals, 14(6), 590. https://doi.org/10.3390/min14060590
He, H., Wang, J., Wen, W., Tian, R., Lin, J., Huang, W., & Li, Y. (2024). Deep Structure of Epithermal Deposits in Youxi Area: Insights from CSAMT and Dual-Frequency IP Data. Minerals, 14(1), 27. https://doi.org/10.3390/min14010027
Huang, Q., Yang, X., & Honaker, R. Q. (2019). Evaluation of frother types for improved flotation recovery and selectivity. Minerals, 9(10). https://doi.org/10.3390/min9100590
Huo, X., Sun, L., Yang, Z., Li, J., Feng, C., Zhang, Z., Pan, X., & Du, M. (2023). Mechanism and Quantitative Characterization of Wettability on Shale Surfaces: An Experimental Study Based on Atomic Force Microscopy (AFM). Energies, 16(22), 7527.
https://doi.org/10.3390/en16227527
Jera, T. M., & Bhondayi, C. (2022). A Review on Froth Washing in Flotation. Minerals, 12(11), 1462. https://doi.org/10.3390/min12111462
Jha, M., Kumar, S., Singh, T. B. N., Srivastava, S. K., Azad, G. K., & Yasmin, S. (2023). Potential health risk assessment through the consumption of arsenic-contaminated groundwater in parts of the middle Gangetic plain. Bulletin of the National Research Centre, 47(1), 1–11. https://doi.org/10.1186/s42269-023-01054-5
Jonker, J., & Pennink, B. W. (2010). Qualitative Research. In The Essence of Research Methodology (pp. 77–96). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71659-4_5
Kim, B., Park, C., Cho, K., Kim, J., Choi, N., & Lee, S. (2021). Sulfuric acid baking—water leaching for gold enrichment and arsenic removal from gold concentrate. Minerals, 11(12), 1332. https://doi.org/10.3390/min11121332
Kruszelnicki, M., Polowczyk, I., & Kowalczuk, P. B. (2024). Insight into the influence of surface wettability on flotation properties of solid particles – Critical contact angle in flotation. Powder Technology, 431, 119056. https://doi.org/10.1016/j.powtec.2023.119056
Kydros, K. A., & Matis, K. A. (1995). Processing an auriferous pyrite concentrate in the presence of reducing agents. Canadian Metallurgical Quarterly, 34(1), 15–20.
https://doi.org/10.1016/0008-4433(94)00011-8
Lane, D. J., Cook, N. J., Grano, S. R., & Ehrig, K. (2016). Selective leaching of penalty elements from copper concentrates: A review. Minerals Engineering, 98, 110–121.
https://doi.org/10.1016/j.mineng.2016.08.006
Lee, S., Gibson, C. E., & Ghahreman, A. (2021). The separation of carbonaceous matter from refractory gold ore using multi-stage flotation: A case study. Minerals, 11(12), 1430. https://doi.org/10.3390/min11121430
Li, S., Schwarz, M. P., Yang, W., Feng, Y., Witt, P., & Sun, C. (2020). Experimental observations of bubble–particle collisional interaction relevant to froth flotation, and calculation of the associated forces. Minerals Engineering, 151, 106335.
https://doi.org/10.1016/j.mineng.2020.106335
Liu, G., Liu, J., Huang, Y., Yang, X., & Zhong, H. (2018). New advances in the understanding and development of flotation collectors: A Chinese experience. Minerals Engineering, 118, 78–86.
https://doi.org/10.1016/j.mineng.2018.01.009
Maldonado, M., Araya, R., & Finch, J. (2012). An overview of optimizing strategies for flotation banks. Minerals, 2(4), 258–271. https://doi.org/10.3390/min2040258
Marcin, M., Sisol, M., Kudelas, D., Ďuriška, I., & Holub, T. (2020). The differences in evaluation of flotation kinetics of talc ore using statistical analysis and response surface methodology. Minerals, 10(11), 1–15. https://doi.org/10.3390/min10111003
Marmiroli, B., Rigamonti, L., & Brito-Parada, P. R. (2022). Life Cycle Assessment in mineral processing – a review of the role of flotation. The International Journal of Life Cycle Assessment, 27(1), 62–81. https://doi.org/10.1007/s11367-021-02005-w
Mhonde, N., Schreithofer, N., Corin, K., & Mäkelä, M. (2020). Assessing the combined effect of water temperature and complex water matrices on xanthate adsorption using multiple linear regression. Minerals, 10(9), 1–18. https://doi.org/10.3390/min10090733
Murciego, A., Álvarez-Ayuso, E., Pellitero, E., Rodríguez, M. A., García-Sánchez, A., Tamayo, A., Rubio, J., Rubio, F., & Rubin, J. (2011). Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations. Journal of Hazardous Materials, 186(1), 590–601. https://doi.org/10.1016/j.jhazmat.2010.11.033
Nzeh, N. S., Popoola, P. A., Adeleke, A., & Adeosun, S. (2024). Physical Concentration of Heavy Minerals: A Brief Review on Low and High Intensity Magnetic Separation Process Techniques. JOM, 76(3), 1329–1344. https://doi.org/10.1007/s11837-023-06251-1
Oliveira, A. V., Junior, J. T. G., Pinto, T. C. S., & Filho, L. de S. L. (2023). The Influence of Static Pressure on Bubble Size and Contact Angle of Quartz: Mimicking What May Happen Inside a Hypothetical Flotation Column. Minerals, 13(3), 417. https://doi.org/10.3390/min13030417
Özçelik, S., & Ekmekçi, Z. (2024). Surface Chemistry and Flotation of Gold-Bearing Pyrite. Minerals, 14(9), 914. https://doi.org/10.3390/min14090914
Pan, Y., Bournival, G., & Ata, S. (2021). The role of non-frothing reagents on bubble size and bubble stability. Minerals Engineering, 161, 106652. https://doi.org/10.1016/j.mineng.2020.106652
Panayotov, V., & Panayotova, M. (2023). Technology for increasing the precious metals content in copper concentrate obtained by flotation. Physicochemical Problems of Mineral Processing, 59(5). https://doi.org/10.37190/PPMP/167424
Panayotova, M. (2023). Control of Non-Ferrous Metal-Sulfide Minerals’ Flotation via Pulp Potential. In Minerals (Vol. 13, Issue 12, p. 1512). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/min13121512
Petronijević, N., Stanković, S., Radovanović, D., Sokić, M., Marković, B., Stopić, S. R., & Kamberović, Ž. (2020). Application of the flotation tailings as an alternative material for an acid mine drainage remediation: A case study of the extremely acidic lake robule (serbia). Metals, 10(1), 16. https://doi.org/10.3390/met10010016
Popli, K., Sekhavat, M., Afacan, A., Dubljevic, S., Liu, Q., & Prasad, V. (2015). Dynamic modeling and real-time monitoring of froth flotation. Minerals, 5(3), 570–591.
https://doi.org/10.3390/min5030510
Rachamalla, M., Chinthada, J., Kushwaha, S., Putnala, S. K., Sahu, C., Jena, G., & Niyogi, S. (2022). Contemporary Comprehensive Review on Arsenic-Induced Male Reproductive Toxicity and Mechanisms of Phytonutrient Intervention. Toxics, 10(12), 744.
https://doi.org/10.3390/toxics10120744
Rahaman, M. S., Rahman, M. M., Mise, N., Sikder, M. T., Ichihara, G., Uddin, M. K., Kurasaki, M., & Ichihara, S. (2021). Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environmental Pollution, 289, 117940. https://doi.org/10.1016/j.envpol.2021.117940
Ran, J. cheng, Qiu, X. yang, Hu, Z., Liu, Q. jun, Song, B. xu, & Yao, Y. qing. (2019). Effects of particle size on flotation performance in the separation of copper, gold and lead. Powder Technology, 344, 654–664. https://doi.org/10.1016/j.powtec.2018.12.045
Reyes, M., Martínez Rojo, E., Escudero, R., Patiño, F., Reyes, I. A., Flores, M. U., Pérez, M., Juárez, J., & Barrientos, F. R. (2023). Depression of Arsenopyrite during Collectorless Flotation in Presence of Aqueous Metal Ions and Inorganic Compounds. Minerals, 13(9), 1–21. https://doi.org/10.3390/min13091200
Rollog, M., Cook, N. J., Guagliardo, P., Ehrig, K., Ciobanu, C. L., & Kilburn, M. (2019). Detection of trace elements/isotopes in olympic dam copper concentrates by nanosims. Minerals, 9(6), 336. https://doi.org/10.3390/min9060336
Rzetala, M. A., Machowski, R., Solarski, M., Bakota, D., Płomiński, A., & Rzetala, M. (2023). Toxic Metals, Non-Metals and Metalloids in Bottom Sediments as a Geoecological Indicator of a Water Body’s Suitability for Recreational Use. International Journal of Environmental Research and Public Health, 20(5), 4334. https://doi.org/10.3390/ijerph20054334
Saavedra Moreno, Y., Bournival, G., & Ata, S. (2021). Foam stability of flotation frothers under dynamic and static conditions. Separation and Purification Technology, 274, 117822. https://doi.org/10.1016/j.seppur.2020.117822
Sajjad, M., & Otsuki, A. (2022). Correlation between Flotation and Rheology of Fine Particle Suspensions. Metals, 12(2), 270. k
Saldaña, M., Neira, P., Flores, V., Moraga, C., Robles, P., & Salazar, I. (2021). Analysis of the dynamics of rougher cells on the basis of phenomenological models and discrete event simulation framework. Metals, 11(9), 1454. https://doi.org/10.3390/met11091454
Sousa, R., Futuro, A., Setas Pires, C., & Machado Leite, M. (2017). Froth flotation of aljustrel sulphide complex ore. Physicochemical Problems of Mineral Processing, 53(2), 758–769.
https://doi.org/10.5277/ppmp170207
Sun, X., Wu, B., Hu, M., Qiu, H., Deng, J., Cai, J., & Jin, X. (2021). Flotation depression of arsenopyrite using sodium nitrobenzoate under alkaline conditions. Minerals, 11(11), 1216. https://doi.org/10.3390/min11111216
Sygusch, J., & Rudolph, M. (2024). Multidimensional Characterization and Separation of Ultrafine Particles: Insights and Advances by Means of Froth Flotation. Powders, 3(3), 460–481. https://doi.org/10.3390/POWDERS3030025
Szmigiel, A., Apel, D. B., Skrzypkowski, K., Wojtecki, L., & Pu, Y. (2024). Advancements in Machine Learning for Optimal Performance in Flotation Processes: A Review. Minerals, 14(4), 1–18. https://doi.org/10.3390/min14040331
Taksavasu, T., Monecke, T., & Reynolds, T. J. (2018). Textural characteristics of noncrystalline silica in sinters and quartz veins: Implications for the formation of bonanza veins in low-sulfidation epithermal deposits. Minerals, 8(8), 331. https://doi.org/10.3390/min8080331
Tang, X., Chen, J., Chen, Y., & Krivovichev, S. V. (2023). Application of Quantum Chemistry in the Study of Flotation Reagents. Minerals, 13(12), 1487. https://doi.org/10.3390/min13121487
Volodin, V., Trebukhov, S., Nitsenko, A., Linnik, X., Tuleutay, F., Trebukhov, A., & Ruzakhunova, G. (2023). Pyrometallurgical Scheme Intended to Process Arsenic-Containing Concentrates with Recovery of Precious Metals. Metals, 13(3), 540. https://doi.org/10.3390/met13030540
Wang, H., Yang, W., Yan, X., Wang, L., Wang, Y., & Zhang, H. (2020). Regulation of bubble size in flotation: A review. Journal of Environmental Chemical Engineering, 8(5), 104070. https://doi.org/10.1016/j.jece.2020.104070
Wang, X., Zhao, K., Hui, B., Yan, W., Wang, Z., Gu, G., & Gao, Z. (2020). Improved flotation of auriferous arsenopyrite by using a novel mixed collector in weakly alkaline pulp. Physicochemical Problems of Mineral Processing, 56(5), 996–1004.
https://doi.org/10.37190/ppmp/127883
Wills, B. A., & Napier-Munn, T. (2005). Wills’ Mineral Processing Technology. In Wills’ Mineral Processing Technology. Elsevier Ltd. https://doi.org/10.1016/B978-0-7506-4450-1.X5000-0
Xing, Y., Gui, X., Karakas, F., & Cao, Y. (2017). Role of collectors and depressants in mineral flotation: A theoretical analysis based on extended DLVO theory. Minerals, 7(11), 223.
https://doi.org/10.3390/min7110223
Zhang, R., Dai, S., Liu, J., Yang, Z., Nie, B., Xing, Y., & Gui, X. (2024). New Insight into the Effect of Particle Surface Roughness on Flotation Efficiency: An Experimental and Theoretical Analysis. Minerals, 14(12), 1267. https://doi.org/10.3390/min14121267
Zhou, S., Li, Y., Nazari, S., Bu, X., Hassanzadeh, A., Ni, C., He, Y., & Xie, G. (2022). An Assessment of the Role of Combined Bulk Micro- and Nano-Bubbles in Quartz Flotation. Minerals, 12(8), 944. https://doi.org/10.3390/min12080944
Derechos de autor 2025 Carlos del Valle Jurado, Diego Geovanny Ramos Armijos

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.