A Drift Diffusion Model Approach to Moral Decision-Making: Toward a Computational Framework for Ethical Dilemmas
Resumen
Can ethical dilemmas be resolved through computational models? In this paper I propose a novel integration of the Drift Diffusion Model (DDM) with a value-based framework for moral reasoning. Based on insights from neuroethics and cognitive neuroscience, I argue that moral decisions —especially under conditions of uncertainty, irreversibility, and emotional interference— can be modeled as processes of noisy evidence accumulation. I introduce the concept of an ethical balance mainly composed of three evaluative variables: sentience, intentionality, and innocence. These inputs are mapped to DDM parameters such as drift rate, decision threshold, and starting point bias. Through illustrative moral scenarios, I show how this framework can both predict and simulate moral judgments. The goal is not to replace normative ethics, but to demonstrate how scientific modeling can enhance our understanding of how moral reasoning unfolds in the brain. This maybe opens the path to a computational ethics grounded in real cognitive processes.
Descargas
Citas
Anderson, S. W., Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1999). Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature Neuroscience, 2(11), 1032-1037. https://doi.org/10.1038/14833
Brink, D. O. (1989). Moral Realism and the Foundations of Ethics. Cambridge University Press. https://doi.org/10.1017/CBO9780511624612
Bunge, M. (2000). La investigación científica: Su estrategia y su filosofía. Siglo XXI.
Bunge, M. (2010). Matter and Mind: A Philosophical Inquiry. Springer Science & Business Media.
Bunge, M. (2013). Pseudociencia e ideología. Laetoli.
Bunge, M. (2018). La ciencia: Su método y su filosofía. Laetoli.
Chan, H.-P., Hadjiiski, L. M., & Samala, R. K. (2020). Computer-Aided Diagnosis in the Era of Deep Learning. Medical physics, 47(5), e218-e227. https://doi.org/10.1002/mp.13764
Chan, H.-P., Samala, R. K., Hadjiiski, L. M., & Zhou, C. (2020). Deep Learning in Medical Image Analysis. Advances in experimental medicine and biology, 1213, 3-21. https://doi.org/10.1007/978-3-030-33128-3_1
Chung, H.-K., Alós-Ferrer, C., & Tobler, P. N. (2021). Conditional valuation for combinations of goods in primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1819), 20190669. https://doi.org/10.1098/rstb.2019.0669
Cornish, A., Wilson, B., Raubenheimer, D., & McGreevy, P. (2018). Demographics Regarding Belief in Non-Human Animal Sentience and Emotional Empathy with Animals: A Pilot Study among Attendees of an Animal Welfare Symposium. Animals : an Open Access Journal from MDPI, 8(10), 174. https://doi.org/10.3390/ani8100174
Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351(1346), 1413-1420. https://doi.org/10.1098/rstb.1996.0125
Dawkins, R. (1989). The Selfish Gene. Oxford University Press.
De los Ríos-Uriarte, E. (2017). The Question of Method in Clinical Bioethics: Approach to a Methodology Adapted to the Context of Mexican Reality. Persona y Bioética, 21(1), 92-113. https://doi.org/10.5294/pebi.2017.21.1.7
de Waal, F. B. M. (2021). How animals do business. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1819), 20190663. https://doi.org/10.1098/rstb.2019.0663
Earp, B. D. (2015). La science ne peut pas déterminer les valeurs humaines.
Feyerabend, P. (1987). Farewell to Reason. Verso.
Garrigan, B., Adlam, A. L. R., & Langdon, P. E. (2016). The neural correlates of moral decision-making: A systematic review and meta-analysis of moral evaluations and response decision judgements. Brain and Cognition, 108, 88-97. https://doi.org/10.1016/j.bandc.2016.07.007
Goldman, A. D., & Becerra, A. (2024). A New View of the Last Universal Common Ancestor. Journal of Molecular Evolution, 92(5), 659-661. https://doi.org/10.1007/s00239-024-10193-w
Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The Neural Bases of Cognitive Conflict and Control in Moral Judgment. Neuron, 44(2), 389-400. https://doi.org/10.1016/j.neuron.2004.09.027
Harris, S. (2011). The Moral Landscape: How Science Can Determine Human Values. Simon and Schuster.
Heyes, C. (2018). Empathy is not in our genes. Neuroscience and Biobehavioral Reviews, 95, 499-507. https://doi.org/10.1016/j.neubiorev.2018.11.001
Jonsen, A. R. (with Siegler, M., & Winslade, W. J.). (1982). Clinical ethics, a practical approach to ethical decisions in clinical medicine. Macmillan.
Kahneman, D., Sibony, O., & Sunstein, C. R. (2021). Noise: A Flaw in Human Judgment. Little, Brown.
Knobe, J. (2005). Theory of mind and moral cognition: Exploring the connections. Trends in Cognitive Sciences, 9(8), 357-359. https://doi.org/10.1016/j.tics.2005.06.011
Krämer, W. (2014). Kahneman, D. (2011): Thinking, Fast and Slow. Statistical Papers, 55(3), 915-915. https://doi.org/10.1007/s00362-013-0533-y
Kuhn, T. S. (1994). The structure of scientific revolutions (2. ed., enlarged, 21. print). Univ. of Chicago Press.
Marewski, J. N., & Gigerenzer, G. (2012). Heuristic decision making in medicine. Dialogues in Clinical Neuroscience, 14(1), 77-89. https://doi.org/10.31887/DCNS.2012.14.1/jmarewski
Mendez, M. F. (2009). The Neurobiology of Moral Behavior: Review and Neuropsychiatric Implications. CNS spectrums, 14(11), 608-620. https://doi.org/10.1017/s1092852900023853
Mendez, M. F., Anderson, E., & Shapira, J. S. (2005). An Investigation of Moral Judgement in Frontotemporal Dementia. Cognitive and Behavioral Neurology, 18(4), 193. https://doi.org/10.1097/01.wnn.0000191292.17964.bb
Miller, M. B., Sinnott-Armstrong, W., Young, L., King, D., Paggi, A., Fabri, M., Polonara, G., & Gazzaniga, M. S. (2010). Abnormal Moral Reasoning in Complete and Partial Callosotomy Patients. Neuropsychologia, 48(7), 2215-2220. https://doi.org/10.1016/j.neuropsychologia.2010.02.021
Moll, J., & de Oliveira-Souza, R. (2007). Moral judgments, emotions and the utilitarian brain. Trends in Cognitive Sciences, 11(8), 319-321. https://doi.org/10.1016/j.tics.2007.06.001
Moretto, G., Làdavas, E., Mattioli, F., & di Pellegrino, G. (2010). A psychophysiological investigation of moral judgment after ventromedial prefrontal damage. Journal of Cognitive Neuroscience, 22(8), 1888-1899. https://doi.org/10.1162/jocn.2009.21367
Myers, C. E., Interian, A., & Moustafa, A. A. (2022). A practical introduction to using the drift diffusion model of decision-making in cognitive psychology, neuroscience, and health sciences. Frontiers in Psychology, 13, 1039172. https://doi.org/10.3389/fpsyg.2022.1039172
Paul, E. S., Harding, E. J., & Mendl, M. (2005). Measuring emotional processes in animals: The utility of a cognitive approach. Neuroscience and Biobehavioral Reviews, 29(3), 469-491. https://doi.org/10.1016/j.neubiorev.2005.01.002
Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews. Neuroscience, 9(2), 148-158. https://doi.org/10.1038/nrn2317
Peters, J., & D’Esposito, M. (2020). The drift diffusion model as the choice rule in inter-temporal and risky choice: A case study in medial orbitofrontal cortex lesion patients and controls. PLoS Computational Biology, 16(4), e1007615. https://doi.org/10.1371/journal.pcbi.1007615
Richens, J. G., Lee, C. M., & Johri, S. (2020). Improving the accuracy of medical diagnosis with causal machine learning. Nature Communications, 11, 3923. https://doi.org/10.1038/s41467-020-17419-7
Roberts, I. D., & Hutcherson, C. A. (2019). Affect and Decision Making: Insights and Predictions from Computational Models. Trends in Cognitive Sciences, 23(7), 602-614. https://doi.org/10.1016/j.tics.2019.04.005
Santens, P., Vanschoenbeek, G., Miatton, M., & De Letter, M. (2018). The moral brain and moral behaviour in patients with Parkinson’s disease: A review of the literature. Acta Neurologica Belgica, 118(3), 387-393. https://doi.org/10.1007/s13760-018-0986-9
Seymour, B., & Dolan, R. (2008). Emotion, decision making, and the amygdala. Neuron, 58(5), 662-671. https://doi.org/10.1016/j.neuron.2008.05.020
Singer, P. (1972). Famine, Affluence, and Morality. Philosophy and Public Affairs, 1(3), 229-243.
Thompson, B., & Griffiths, T. L. (2021). Human biases limit cumulative innovation. Proceedings. Biological Sciences, 288(1946), 20202752. https://doi.org/10.1098/rspb.2020.2752
Whelehan, D. F., Conlon, K. C., & Ridgway, P. F. (2020). Medicine and heuristics: Cognitive biases and medical decision-making. Irish Journal of Medical Science, 189(4), 1477-1484. https://doi.org/10.1007/s11845-020-02235-1
Wu, Y. E., & Hong, W. (2022). Neural basis of prosocial behavior. Trends in Neurosciences, 45(10), 749-762. https://doi.org/10.1016/j.tins.2022.06.008
García Sanclemente, S. G., Sánchez Jaramillo, E. A., & Orellana Márquez, L. V. (2025). Los Microaprendizajes como Estrategias Didácticas que Potencian el Desarrollo Cognitivo. Ciencia Y Reflexión, 4(2), 507–519. https://doi.org/10.70747/cr.v4i2.271
Escalante Jiménez, J. L., Rodríguez Colón, P. L., & Polanco García, C. Y. (2025). Inteligencia artificial en contextos educativos: un acercamiento desde una revisión documental sistemática. Ciencia Y Reflexión, 4(2), 325–349. https://doi.org/10.70747/cr.v4i2.241
Jiménez Gómez, R. (2025). Análisis de la Heterogeneidad Estructural de las Regiones de Costa Rica. Ciencia Y Reflexión, 4(2), 37–66. https://doi.org/10.70747/cr.v4i2.244
Derechos de autor 2025 Carlos Ledesma – Alonso

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.