The neurobiology of suicidal ideation: an integrative review

Palabras clave: prevention, suicide, depression

Resumen

Introduction: The research question guiding this study is: What are the main neurobiological mechanisms associated with suicide, and how can pharmacological interventions influence these mechanisms to reduce suicidal ideation and behavior? The objective of this integrative review is to synthesize the evidence on the relationship between neurobiological factors and suicidal ideation, using a meta-analysis approach to quantitatively evaluate the available data. Methodology: The search was refined to include only free access articles, totaling sixty-seven studies, and clinical studies addressing the issue, resulting in seven articles analyzed. Inclusion criteria included the selection of empirical studies that evaluated the relationship between neurobiological factors and SI, ensuring that the research focused on direct evidence on the topic. Results and Discussion: Deficits in the excitation-inhibition balance in the anterior insula are associated with suicide risk, which is different from symptoms of depression. Therefore, it is suggested that SI may have distinct neurobiological underpinnings from depression, indicating a specific psychopathological effect. The model suggests that the interaction between neurotransmitters and hormones, as well as the social and environmental context (represented by the error ), may contribute to the risk of SI, and the sum of the influences of these factors can be used to predict risk dynamically over time. Conclusion: This model represents an advance in the understanding of suicidal ideation and in the development of prevention and intervention strategies. Continued research is essential to reduce the impact of suicide on society.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abram, SV, Roach, BJ, Fryer, SL, Calhoun, VD, Preda, A., van Erp, TGM, Bustillo, JR, Lim, KO, Loewy, RL, Stuart, BK, Krystal, JH, Ford, JM, & Mathalon, D.H. (2022). Validation of ketamine as a pharmacological model of thalamic dysconnectivity across the illness course of schizophrenia. Molecular Psychiatry, 27 (5), 2448–2456. https://doi.org/10.1038/s41380-022-01502-0
Alves, FJO, Fialho, E., Paiva de Araújo, JA, Naslund, JA, Barreto, ML, Patel, V., & Machado, DB (2024). The Rising Trends of Self- Harm in Brazil: An Ecological Analysis of Notifications, Hospitalizations, Mortality Between 2011 and 2022. Lancet Regional Health – Americas, 31, 100691. https://doi.org/10.1016/j.lana.2024.100691
Avery, M. C., & Krichmar, J. L. (2017). Neuromodulatory Systems and Their Interactions: A Review of Models, Theories, and Experiments. Frontiers in Neural Circuits, 11, 108. https://doi.org/10.3389/fncir.2017.00108
Bazenkov, N., Vorontsov, D., Dyakonova, V., Zhilyakova, L., Zakharov, I., Kuznetsov, O., Kulivets, S., & Sakharov, D. (2018). Discreet Modeling of Neuronal Interactions in Multi-Transmitter Networks. Scientific and Technical Information Processing, 45, 283–296. https://doi.org/10.3103/S0147688218050015
Berardelli I., Serafini, G., Cortese, N., Fiaschè, F., O'Connor, R. C., & Pompili, M. (2020). The Involvement of Hypothalamus – Pituitary –Adrenal (HPA) Axis in Suicide Risk. Brain Sciences, 10(9), 653. https://doi.org/10.3390/brainsci10090653
Beyene, A. G. (2022). Unraveling Somatodendritic Dopamine Release Using Dopafilm, the Two -Dimensional Chemi-Sensitive Substrate for Real-Time Measurement of Neurochemical Efflux. ECS Meeting Abstracts, MA2022-01(8), 700. https://iopscience.iop.org/article/10.1149/MA2022-018700mtgabs
Esler, MD, Jennings, GL, & Lambert, G. W. (1988). Release of Noradrenaline into the Cerebrovascular Circulation in Patients with Primary Hypertension. Journal of Hypertension, 6(4), S494-S496. https://doi.org/10.1097/00004872-198812040-00156
Fürtinger, S., Zinn, J. C., & Simonyan, K. (2014). A Neural Population Model Incorporating Dopaminergic Neurotransmission During Complex Voluntary Behaviors. PLoS Computational Biology, 10(11), e1003924. https://doi.org/10.1371/journal.pcbi.1003924
Gandolfi, D., Boiani, G. M., Bigiani, A., & Mapelli, J. (2021). Modeling Neurotransmission: Computational Tools to Investigate Neurological Disorders. International Journal of Molecular Sciences, 22(9), 4565. https://doi.org/10.3390/ijms22094565
Genis-Mendoza, AD, Dionisio-García, DM, Gonzalez-Castro, TB, Tovilla-Zaráte, CA, Juárez - Rojop, IE, López-Narváez, ML, Castillo-Avila, RG, & Nicolini, H. (2022). Increased Levels of Cortisol in Individuals With Suicide Attempt and Its Relationship With the Number of Suicide Attempts and Depression. Frontiers in Psychiatry, 13, 912021. https://doi.org/10.3389/fpsyt.2022.912021
Gilbert, JR, Ballard, ED, Galiano, CS, Nugent, AC, & Zarate, CAJ (2020). Magnetoencephalographic Correlates of Suicidal Ideation in Major Depression. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 5 (3), 354–363. https://doi.org/10.1016/j.bpsc.2019.11.011
Hansen, J.Y., Shafiei , G., Markello , R.D., Smart , K., Cox, S.M.L., Nørgaard , M., Beliveau , V., Wu, Y., Gallezot , J.D., Aumont , É., Servaes , S. , Scala, S.G., DuBois , J.M., Wainstein , G., Bezgin , G., Funck, T., Schmitz, T.W., Spreng , R.N., Galovic , M., Koepp , M.J., … Misic , B. (2022). Mapping Neurotransmitter Systems to the Structural and Functional Organization of the Human Neocortex. Nature Neuroscience, 25(11), 1569-1581. https://doi.org/10.1038/s41593-022-01186-3
Hatamie, A., Ren, L., Dou, H., Gandasi, N. R., Rorsman, P., & Ewing, A. (2021). Nanoscale Amperometry Reveals that Only a Fraction of Vesicular Serotonin Content is Released During Exocytosis from Beta Cells. Angewandte Chemie, 60(14), 7593-7596. https://doi.org/10.1002/anie.202015902
Héry, F., & Ternaux, J.P. (1981). Regulation of Release Processes in Central Serotoninergic Neurons. Journal de Physiologie, 77(2-3), 287-301. https://pubmed.ncbi.nlm.nih.gov/6457140
Hou, J., Liu, S., & van Wingen, G. (2023). Increased Subcortical Brain Activity in Anxious but not Depressed Individuals. Journal of Psychiatric Research, 160, 38-46. https://doi.org/10.1016/j.jpsychires.2023.02.013
Ionescu, DF, Niciu, MJ, Mathews, DC, Richards, EM, & Zarate, CA, Jr (2013). Neurobiology of Anxious Depression: A Review. depression and Anxiety , 30(4), 374-385. https://doi.org/10.1002/da.22095
Khan, A.F., Adewale, Q., Baumeister, T.R., Carbonell, F., Zilles, K., Palomero -Gallagher, N., Iturria -Medina, Y., & Alzheimer's Disease Neuroimaging Initiative (2022). Personalized Brain Models Identify Neurotransmitter Receptor Changes in Alzheimer's Disease. Brain: A Journal of Neurology, 145(5), 1785–1804. https://doi.org/10.1093/brain/awab375
Kimmel, H., Vicentic, A., & Kuhar, M.J. (2001). Neurotransmitter Transporters Synthesis and Degradation Rates. Life Sciences, 68(19-20), 2181-2185. https://doi.org/10.1016/s0024-3205(01)01004-9
Kringelbach, M.L., Cruzat, J., Cabral, J., Knudsen, G.M., Carhart-Harris, R., Whybrow, P.C., Logothetis, N.K., & Deco, G. (2020). Dynamic Coupling of Whole- Brain Neuronal and Neurotransmitter Systems. Proceedings of the National Academy of Sciences of the United States of America, 117(17), 9566–9576. https://doi.org/10.1073/pnas.1921475117
Leon- Pinzon, C., Cercós, MG, Noguez, P., Trueta, C., & De-Miguel, FF (2014). Exocytosis of Serotonin From the Neuronal Soma is Sustained by a Serotonin and Calcium-Dependent Feedback Loop. Frontiers in Cellular Neuroscience, 8, 169. https://doi.org/10.3389/fncel.2014.00169
Liebe, T., Li, M., Colic, L., Munk, MHJ, Sweeney-Reed, CM, Woelfer, M., Kretzschmar, MA, Steiner, J., von Düring, F., Behnisch, G., Schott, B.H., & Walter, M. (2018). Ketamine influences the locus coeruleus norepinephrine network, with a dependency on norepinephrine transporter genotype —A placebo-controlled fMRI study. NeuroImage. Clinical, 20, 715–723. https://doi.org/10.1016/j.nicl.2018.09.001
Lundin, NB, Sepe-Forrest, L., Gilbert, JR, Carver, FW, Furey, ML, Zarate, CAJ, & Nugent, AC (2021). Ketamine Alters Electrophysiological Responses to Emotional Faces in Major Depressive Disorder. Journal of Affective Disorders, 279, 239–249. https://doi.org/10.1016/j.jad.2020.10.007
Masoli, S., Rizza, M.F., Tognolina, M., Prestori, F., & D'Angelo, E. (2022). Computational Models of Neurotransmission at Cerebellar Synapses Unveil the Impact on Network Computing. Frontiers in Computational Neuroscience, 16, 1006989. https://doi.org/10.3389/fncom.2022.1006989
Melhem, N., Keilp, J., Porta, G., Oquendo, M.A., Burke, A., Stanley, B., Cooper, T.B., Mann, J.J., & Brent, D.A. (2016). Blunted HPA Axis Activity in Suicide Attempters Compared to those at High Risk for Suicide Behavior. Neuropsychopharmacology, 41, 1447-1456. https://doi.org/10.1038/npp.2015.309
Mkrtchian, A., Evans, J. W., Kraus, C., Yuan, P., Kadriu, B., Nugent, A. C., Roiser, J. P., & Zarate, CA. J. (2021). Ketamine modulates frontostriatal circuitry in depressed and healthy individuals. Molecular Psychiatry, 26 (7), 3292–3301. https://doi.org/10.1038/s41380-020-00878-1
Mizuno, Y., Ashok, A. H., Bhat, B. B., Jauhar, S., & Howes, O. D. (2023). Dopamine in Major Depressive Disorder: A Systematic Review and Meta- Analysis of in Vivo Imaging Studies. Journal of Psychopharmacology, 37(11), 1058-1069. https://doi.org/10.1177/02698811231200881
Mohamed, ZH, Riyad, Y. M, Hendawy, HA, & Abdelbary, HMH (2023). Enhanced Photocatalytic Degradation of the Antidepressant Sertraline in Aqueous Solutions by Zinc Oxide Nanoparticles. Water. 15(11), 2074. https://doi.org/10.3390/w15112074
O'Connor, D.B., Ferguson, E., Green, J.A., O’Carroll, R.E., & O'Connor, R.C. (2016). Cortisol Levels and Suicidal Behavior: A Meta- Analysis. Psychoneuroendocrinology, 63, 370-379. https://doi.org/10.1016/j.psyneuen.2015.10.011
Rongen, GA, Lenders, J. W., Smits, P., & Floras, J. S. (2000). Comparison of Two Indices for Forearm Noradrenaline Release in Humans. Clinical Science, 99(5), 363-369. https://doi.org/10.1042/cs0990363
Shashaank, N., Somayaji, M., Miotto, M., Mosharov, EV, Makowicz, EA, Knowles, DA, Ruocco, G., & Sulzer, DL (2023). Computational Models of Dopamine Release Measured by Fast Scan Cyclic Voltammetry in Vivo. PNAS Nexus, 2(3), 1-11. https://doi.org/10.1093/pnasnexus/pgad044
Tani, H., Moxon -Emre, I., Forde, NJ, Neufeld, NH, Bingham, KS, Whyte, EM, Meyers, BS, Alexopoulos, GS, Hoptman, MJ, Rothschild, AJ, Uchida, H., Flint, A.J., Mulsant, B.H., & Voineskos, A.N. (2024). Brain metabolite levels in remitted psychotic depression with consideration of effects of antipsychotic medication. Brain Imaging and Behavior, 18 (1), 117–129. https://doi.org/10.1007/s11682-023-00807-0
Tozzi, L., Zhang, X., Pines, A. et al. (2024). Personalized Brain Circuit Scores Identify Clinically Distinct Biotypes in Depression and Anxiety. Nature Medicine, 30, 2076-2087. https://doi.org/10.1038/s41591-024-03057-9
Van Erp, T.G., Baker, R.A., Cox, K., Okame, T., Kojima, Y., Eramo, A., & Potkin, S.G. (2020). Effect of brexpiprazole on control of impulsivity in schizophrenia: A randomized functional magnetic resonance imaging study. Psychiatry Research. Neuroimaging, 301, 111085. https://doi.org/10.1016/j.pscychresns.2020.111085
Vicentic, A., Battaglia, G., Carroll, F.I., & Kuhar, M.J. (1999). Serotonin Transporter Production and Degradation Rates: Studies with RTI-76. Brain Research, 841(1-2), 1–10. https://doi.org/10.1016/s0006-8993(99)01761-8
Zhang, F. F., Peng, W., Sweeney, J. A., Jia, Z. Y., & Gong, Q. Y. (2018). Brain Structure Changes in Depression: Psychoradiological Evidence. CNS Neuroscience & Therapeutics, 24(11), 994-1003. https://doi.org/10.1111/cns.12835
Publicado
2025-09-08
Cómo citar
Agrela Rodrigues, F. de A., Cerqueira Rodrigues, M. A., & Silva, A. (2025). The neurobiology of suicidal ideation: an integrative review. Ciencia Latina Revista Científica Multidisciplinar, 9(4), 6205-6229. https://doi.org/10.37811/cl_rcm.v9i4.19242
Sección
Ciencias de la Salud