Perfiles de Expresión en Cáncer: Del RNA a Tratamientos Personalizados
Resumen
El RNA desempeña un papel crucial en la expresión de los genes. Dentro del grupo de los RNA, se encuentran los miRNA, pequeñas moléculas de RNA que tienen la capacidad de regular la actividad de los genes. A diferencia del RNA mensajero (RNAm), que codifica proteínas, los miRNA no se traducen en proteínas, sino que se unen a RNAm específicos para regular su expresión. Estos pequeños fragmentos de RNA pueden inhibir la traducción del RNAm o inducir su degradación, lo que lleva a una disminución en la producción de la proteína codificada por ese RNAm. En este capítulo, exploraremos en detalle la fascinante función de los miRNA en la regulación génica, la interacción entre las mismas moléculas y su implicación en el cáncer. Investigaremos cómo los miRNA pueden influir en el desarrollo, diagnóstico y tratamiento del cáncer de mama y cómo su estudio podría abrir nuevas perspectivas terapéuticas en el campo de la medicina.
Descargas
Citas
Ahmad, A., Sethi, S., Chen, W., Ali-fehmi, R., Mittal, S., & Sarkar, F. H. (2014). Up-regulation of microRNA-10b is associated with the development of breast cancer brain metastasis. American Journal of Translational Research, 6(4), 384–390.
Amy E. Pasquinelli, Brenda J. Reinhart, Frank Slack, Mark Q. Martindale, Mitzi I. Kurodak, Betsy Maller, David C. Hayward, Eldon E. Ball, Bernard Degnan, Peter Müller, Jürg Spring, Ashok Srinivasan, Mark Fishman, John Finnerty, Joseph Corbo, Michael Levine, Patrick Leahy, Eric Davidson, & Gary Ruvkun. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808), 86–89. www.nature.com
Anand, P., Kunnumakara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., Lai, O. S., Sung, B., & Aggarwal, B. B. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical Research, 25(9), 2097–2116.
https://doi.org/10.1007/s11095-008-9661-9
Aravin, A. A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J., & Tuschl, T. (2003). The small RNA profile during Drosophila melanogaster development. Developmental Cell, 5(2), 337–350.
https://doi.org/10.1016/S1534-5807(03)00228-4
Bartel, D. P. (2004). MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116(2), 281–297.
https://doi.org/10.1016/S0092-8674(04)00045-5
Bhaskaran, M., & Mohan, M. (2014). MicroRNAs: History, Biogenesis, and Their Evolving Role in Animal Development and Disease. Veterinary Pathology, 51(4), 759–774.
https://doi.org/10.1177/0300985813502820
Bommer, G. T., Gerin, I., Feng, Y., Kaczorowski, A. J., Kuick, R., Love, R. E., Zhai, Y., Giordano, T. J., Qin, Z. S., Moore, B. B., MacDougald, O. A., Cho, K. R., & Fearon, E. R. (2007). p53-Mediated Activation of miRNA34 Candidate Tumor-Suppressor Genes. Current Biology, 17(15), 1298–1307.
https://doi.org/10.1016/j.cub.2007.06.068
Borzi, C., Calzolari, L., Centonze, G., Milione, M., Sozzi, G., & Fortunato, O. (2017). mir-660-p53-mir-486 network: A new key regulatory pathway in lung tumorigenesis. International Journal of Molecular Sciences, 18(1).
https://doi.org/10.3390/ijms18010222
Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F., & Croce, C. M. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15524–15529.
https://doi.org/10.1073/pnas.242606799
Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., & Croce, C. M. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences, 101(9), 2999–3004.
https://doi.org/10.1016/S0168-583X(97)00335-2
Chen, L., Heikkinen, L., Wang, C., Yang, Y., Sun, H., & Wong, G. (2019). Trends in the development of miRNA bioinformatics tools. Briefings in Bioinformatics, 20(5), 1836–1852.
https://doi.org/10.1093/bib/bby054
Chen, P. S., Su, J. L., Cha, S. T., Tarn, W. Y., Wang, M. Y., Hsu, H. C., Lin, M. T., Chu, C. Y., Hua, K. T., Chen, C. N., Kuo, T. C., Chang, K. J., Hsiao, M., Chang, Y. W., Chen, J. S., Yang, P. C., & Kuo, M. L. (2011). miR-107 promotes tumor progression by targeting the let-7 microRNA in mice and humans. Journal of Clinical Investigation, 121(9), 3442–3455.
https://doi.org/10.1172/JCI45390
Chen, S., Yang, C., Sun, C., Sun, Y., Yang, Z., Cheng, S., & Zhuge, B. (2019). MiR-21-5p Suppressed the Sensitivity of Hepatocellular Carcinoma Cells to Cisplatin by Targeting FASLG. DNA and Cell Biology, 38(8), 865–873.
https://doi.org/10.1089/dna.2018.4529
Chen, X., Liang, H., Zhang, J., Zen, K., & Zhang, C. Y. (2012). Horizontal transfer of microRNAs: Molecular mechanisms and clinical applications. Protein and Cell, 3(1), 28–37.
https://doi.org/10.1007/s13238-012-2003-z
Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., Wojcik, S. E., Aqeilan, R. I., Zupo, S., Dono, M., Rassenti, L., Alder, H., Volinia, S., Liu, C. G., Kipps, T. J., Negrini, M., & Croce, C. M. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.
https://doi.org/10.1073/pnas.0506654102
Coll, V. B. (2007). Estructura y propiedades de los Acidos Nucleicos. Química Aplicada a la Ingeniería Biomédica.
de Sousa, M. C., Gjorgjieva, M., Dolicka, D., Sobolewski, C., & Foti, M. (2019). Deciphering miRNAs’ action through miRNA editing. International Journal of Molecular Sciences, 20(24).
https://doi.org/10.3390/ijms20246249
Decker, J. T., Hall, M. S., Blaisdell, R. B., Schwark, K., Jacqueline, S., & Shea, L. D. (2018). Dynamic microRNA activity identifies therapeutic targets in trastuzumab-resistant HER2+ breast cancer. Biotecnology Bioengeniering, 115(10), 2613–2623. https://doi.org/10.1002/bit.26791.Dynamic
Deng, Q., Hu, H., Yu, X., Liu, S., Wang, L., Chen, W., Zhang, C., Zeng, Z., Cao, Y., Xu-Monette, Z. Y., Li, L., Zhang, M., Rosenfeld, S., Bao, S., Hsi, E., Young, K. H., Lu, Z., & Li, Y. (2019). Tissue-specific microRNA expression alters cancer susceptibility conferred by a TP53 noncoding variant. Nature Communications, 10(1), 1–13.
https://doi.org/10.1038/s41467-019-13002-x
Dostie, J., Mourelatos, Z., Yang, M., Sharma, A., & Dreyfuss, G. (2003). Numerous microRNPs in neuronal cells containing novel microRNAs. Rna, 9(2), 180–186.
https://doi.org/10.1261/rna.2141503
Fan, X., Chen, W. E. I., Fu, Z., Zeng, L., Yin, Y., & Yuan, H. (2017). MicroRNAs , a subpopulation of regulators , are involved in breast cancer progression through regulating breast cancer stem cells ( Review ). 5069–5076.
https://doi.org/10.3892/ol.2017.6867
Farré, P. L., Duca, R. B., Massillo, C., Dalton, G. N., Graña, K. D., Gardner, K., Lacunza, E., & De Siervi, A. (2021). Mir-106b-5p: A master regulator of potential biomarkers for breast cancer aggressiveness and prognosis. International Journal of Molecular Sciences, 22(20).
https://doi.org/10.3390/ijms222011135
Filippova, E. A., Fridman, M. V., Burdennyy, A. M., Loginov, V. I., Pronina, I. V., Lukina, S. S., Dmitriev, A. A., & Braga, E. A. (2021). Long noncoding rna gas5 in breast cancer: Epigenetic mechanisms and biological functions. International Journal of Molecular Sciences, 22(13).
https://doi.org/10.3390/ijms22136810
Flamand, M. N., Gan, H. H., Mayya, V. K., Gunsalus, K. C., & Duchaine, T. F. (2017). A non-canonical site reveals the cooperative mechanisms of microRNA-mediated silencing. Nucleic Acids Research, 45(12), 7212–7225.
https://doi.org/10.1093/nar/gkx340
Fridrichova, I., & Zmetakova, I. (2019). MicroRNAs contribute to breast cancer invasiveness. Cells, 8(11).
https://doi.org/10.3390/cells8111361
Gjorgjieva, M., Sobolewski, C., Dolicka, D., Correia De Sousa, M., & Foti, M. (2019). MiRNAs and NAFLD: From pathophysiology to therapy. Gut, 68(11), 2065–2079.
https://doi.org/10.1136/gutjnl-2018-318146
Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15(8), 509–524. https://doi.org/10.1038/nrm3838
Hata, A., & Kashima, R. (2016). Dysregulation of microRNA biogenesis machinery in cancer. Crit Rev Biochem Mol Biol., 51(3), 121–134.
https://doi.org/10.3109/10409238.2015.1117054.Dysregulation
Hill, M., & Tran, N. (2021). miRNA interplay: Mechanisms and consequences in cancer. In DMM Disease Models and Mechanisms (Vol. 14, Issue 4). https://doi.org/10.1242/dmm.047662
Ho, P. T. B., Clark, I. M., & Le, L. T. T. (2022). MicroRNA-Based Diagnosis and Therapy. International Journal of Molecular Sciences, 23(13), 1–18.
https://doi.org/10.3390/ijms23137167
Jackson, R. J., & Standart, N. (2007). How do microRNAs regulate gene expression? Science’s STKE : Signal Transduction Knowledge Environment, 2007(367).
https://doi.org/10.1126/stke.3672007re1
Jo, H., Shim, K., & Jeoung, D. (2022). Potential of the miR-200 Family as a Target for Developing Anti-Cancer Therapeutics. International Journal of Molecular Sciences, 23(11).
https://doi.org/10.3390/ijms23115881
Jordan-Alejandre, E., Campos-Parra, A. D., Castro-López, D. L., & Silva-Cázares, M. B. (2023). Potential miRNA Use as a Biomarker: From Breast Cancer Diagnosis to Metastasis. Cells, 12(4), 1–18.
https://doi.org/10.3390/cells12040525
Klicka, K., Grzywa, T. M., Mielniczuk, A., Klinke, A., & Włodarski, P. K. (2022). The role of miR-200 family in the regulation of hallmarks of cancer. Frontiers in Oncology, 12(September), 1–28.
https://doi.org/10.3389/fonc.2022.965231
Kotani, A., Ha, D., Schotte, D., Den Boer, M. L., Armstrong, S. A., & Lodish, H. F. (2010). A novel mutation in the miR-128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL-AF4 acute lymphocytic leukemia cells. Cell Cycle, 9(6), 1037–1042.
https://doi.org/10.4161/cc.9.6.11011
Kozak, M. (2008). Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function. Gene, 423(2), 108–115.
https://doi.org/10.1016/j.gene.2008.07.013
Krützfeldt, J., Poy, M. N., & Stoffel, M. (2006). Strategies to determine the biological function of micrornas. Nature Genetics, 38(6S), S14.
https://doi.org/10.1038/ng1799
Lagos-quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of Novel Genes Coding for Small Expressed RNAs Author ( s ): Mariana Lagos-Quintana , Reinhard Rauhut , Winfried Lendeckel and Thomas Published by : American Association for the Advancement of Science Stable URL :
Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543), 853–858.
https://doi.org/10.1126/science.1064921
Lamadrid-Romero, M., Díaz-Martínez, F., & Molina-Hernández, A. (2013). Los microRNA: una herramienta que podría ser usada como biomarcadores de la corticogénesis fetal. Perinatología y Reproducción Humana, 28(3), 146–153.
Lau, N. C., Weinsein, E. G., & Bartel, D. P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elecans. Science, 294, 858–862.
https://doi.org/10.3917/reco.pr2.0019
Lee, R., Feinbaum, R., & Ambros, V. (1993). The C. elegans Heterochronic Gene lin-4 Encodes Small RNAs with Antisense Complementarity to lin-14. Cell, 116(116), 843–854.
Li, M., Zou, X., Xia, T., Wang, T., Liu, P., Zhou, X., Wang, S., & Zhu, W. (2019). A five-miRNA panel in plasma was identified for breast cancer diagnosis. In Cancer Medicine (Vol. 8, Issue 16, pp. 7006–7017).
https://doi.org/10.1002/cam4.2572
Lin, S., & Gregory, R. (2015a). MicroRNA biogenesis pathways in cancer. 15(6), 321–333.
https://doi.org/10.1038/nrc3932.MicroRNA
Lin, S., & Gregory, R. I. (2015b). MicroRNA biogenesis pathways in cancer. Nature Reviews Cancer, 15(6), 321–333.
https://doi.org/10.1038/nrc3932
Liu, B., Su, F., Lv, X., Zhang, W., Shang, X., Zhang, Y., & Zhang, J. (2019). Serum microRNA ‑ 21 predicted treatment outcome and survival in HER2 ‑ positive breast cancer patients receiving neoadjuvant chemotherapy combined with trastuzumab. Cancer Chemotherapy and Pharmacology, 0123456789.
https://doi.org/10.1007/s00280-019-03937-9
Liu, J., Zhou, F., Guan, Y., Meng, F., Zhao, Z., Su, Q., Bao, W., Wang, X., Zhao, J., Huo, Z., Zhang, L., Zhou, S., Chen, Y., & Wang, X. (2022). The Biogenesis of miRNAs and Their Role in the Development of Amyotrophic Lateral Sclerosis. Cells, 11(3).
https://doi.org/10.3390/cells11030572
Liu, W. L., Wang, H. xia, Shi, C. xin, Shi, F. yu, Zhao, L. yu, Zhao, W., & Wang, G. hui. (2019). MicroRNA-1269 promotes cell proliferation via the AKT signaling pathway by targeting RASSF9 in human gastric cancer. Cancer Cell International, 19(1), 1–13.
https://doi.org/10.1186/s12935-019-1026-4
Maleki, S., Cottrill, K. A., Poujade, F. A., Bhattachariya, A., Bergman, O., Gådin, J. R., Simon, N., Lundströmer, K., Franco-Cereceda, A., Björck, H. M., Chan, S. Y., & Eriksson, P. (2019). The mir-200 family regulates key pathogenic events in ascending aortas of individuals with bicuspid aortic valves. Journal of Internal Medicine, 285(1), 102–114. https://doi.org/10.1111/joim.12833
McCarthy, N. (2005). Friend or foe? Nature Reviews Cancer, 5(7), 497.
https://doi.org/10.1038/nrc1658
McEwen, J. G. (n.d.). Breve historia de la biología molecular.pdf (pp. 31–36).
McGuire, A., Brown, J. A. L., & Kerin, M. J. (2015). Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer and Metastasis Reviews, 34(1), 145–155.
https://doi.org/10.1007/s10555-015-9551-7
Müller, V., Oliveira-Ferrer, L., Steinbach, B., Pantel, K., & Schwarzenbach, H. (2019). Interplay of lncRNA H19/miR-675 and lncRNA NEAT1/miR-204 in breast cancer. Molecular Oncology, 13(5), 1137–1149.
https://doi.org/10.1002/1878-0261.12472
O’Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology, 9(AUG), 1–12.
https://doi.org/10.3389/fendo.2018.00402
O’Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V, & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature.
https://doi.org/10.1038/301368c0
Omar, H. A., El-Serafi, A. T., Hersi, F., Arafa, E. S. A., Zaher, D. M., Madkour, M., Arab, H. H., & Tolba, M. F. (2019). Immunomodulatory MicroRNAs in cancer: targeting immune checkpoints and the tumor microenvironment. FEBS Journal, 286(18), 3540–3557.
https://doi.org/10.1111/febs.15000
Ooi, J. Y. Y., Bernardo, B. C., Singla, S., Patterson, N. L., Lin, R. C. Y., & McMullen, J. R. (2017). Identification of miR-34 regulatory networks in settings of disease and antimiR-therapy: Implications for treating cardiac pathology and other diseases. RNA Biology, 14(5), 500–513.
https://doi.org/10.1080/15476286.2016.1181251
Orangi, E., & Motovali-Bashi, M. (2019). Evaluation of miRNA-9 and miRNA-34a as potential biomarkers for diagnosis of breast cancer in Iranian women. Gene, 687, 272–279.
https://doi.org/10.1016/j.gene.2018.11.036
Petri, B. J., & Klinge, C. M. (2020). Regulation of breast cancer metastasis signaling by miRNAs. In Cancer and Metastasis Reviews (Vol. 39, Issue 3). https://doi.org/10.1007/s10555-020-09905-7
Piasecka, D., Braun, M., Kordek, R., Sadej, R., & Romanska, H. (2018). MicroRNAs in regulation of triple-negative breast cancer progression. Journal of Cancer Research and Clinical Oncology, 144(8), 1401–1411.
https://doi.org/10.1007/s00432-018-2689-2
Pu, M., Chen, J., Tao, Z., Miao, L., Qi, X., Wang, Y., & Ren, J. (2019). Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cellular and Molecular Life Sciences, 76(3), 441–451.
https://doi.org/10.1007/s00018-018-2940-7
Rana, T. M. (2007). Illuminating the silence: Understanding the structure and function of small RNAs. Nature Reviews Molecular Cell Biology, 8(1), 23–36. https://doi.org/10.1038/nrm2085
Reinhart, B., FJ, S., M, B., AE, P., JC, B., AE, R., HR, H., & GB, R. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901–906.
Robinson, V. L. (2009). Rethinking the central dogma: Noncoding RNAs are biologically relevant. Urologic Oncology: Seminars and Original Investigations, 27(3), 304–306.
https://doi.org/10.1016/j.urolonc.2008.11.004
Rossi, S., Sevignani, C., Nnadi, S. C., Siracusa, L. D., & Calin, G. A. (2008). Cancer-associated genomic regions (CAGRs) and noncoding RNAs: Bioinformatics and therapeutic implications. Mammalian Genome, 19(7–8), 526–540. https://doi.org/10.1007/s00335-008-9119-8
Saliminejad, K., Khorram Khorshid, H. R., Soleymani Fard, S., & Ghaffari, S. H. (2019). An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. Journal of Cellular Physiology, 234(5), 5451–5465.
https://doi.org/10.1002/jcp.27486
Shang, A., Lu, W. Y., Yang, M., Zhou, C., Zhang, H., Cai, Z. X., Wang, W. W., Wang, W. X., & Wu, G. Q. (2018). miR-9 induces cell arrest and apoptosis of oral squamous cell carcinoma via CDK 4/6 pathway. Artificial Cells, Nanomedicine and Biotechnology, 46(8), 1754–1762.
https://doi.org/10.1080/21691401.2017.1391825
Shibuya, N., Kakeji, Y., & Shimono, Y. (2020). MicroRNA-93 targets WASF3 and functions as a metastasis suppressor in breast cancer. April, 2093–2103. https://doi.org/10.1111/cas.14423
Slack, F. J., Basson, M., Liu, Z., Ambros, V., Horvitz, H. R., & Ruvkun, G. (2000). The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Molecular Cell, 5(4), 659–669.
https://doi.org/10.1016/S1097-2765(00)80245-2
Sobolewski, C., Calo, N., Portius, D., & Foti, M. (2015). MicroRNAs in fatty liver disease. Seminars in Liver Disease, 35(1), 12–25.
https://doi.org/10.1055/s-0034-1397345
Song, C., Xu, Z., Jin, Y., Zhu, M., Wang, K., & Wang, N. (2015). The network of micrornas, Transcription factors, Target genes and host genes in human renal cell carcinoma. Oncology Letters, 9(1), 498–506
. https://doi.org/10.3892/ol.2014.2683
Swellam, M., Zahran, R. F. K., Abo El-Sadat Taha, H., El-Khazragy, N., & Abdel-Malak, C. (2019). Role of some circulating MiRNAs on breast cancer diagnosis. Archives of Physiology and Biochemistry, 125(5), 456–464.
https://doi.org/10.1080/13813455.2018.1482355
Turunen, T. A., Roberts, T. C., Laitinen, P., Väänänen, M. A., Korhonen, P., Malm, T., Ylä-Herttuala, S., & Turunen, M. P. (2019). Changes in nuclear and cytoplasmic microRNA distribution in response to hypoxic stress. Scientific Reports, 9(1), 1–12.
https://doi.org/10.1038/s41598-019-46841-1
Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659.
https://doi.org/10.1038/ncb1596
Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation microRNAscanupregulate translation. 318(December), 1931–1934.
Wang, D., Sun, X., Wei, Y., Liang, H., Yuan, M., Jin, F., Chen, X., Liu, Y., Zhang, C. Y., Li, L., & Zen, K. (2018). Nuclear miR-122 directly regulates the biogenesis of cell survival oncomiR miR-21 at the posttranscriptional level. Nucleic Acids Research, 46(4), 2012–2029. https://doi.org/10.1093/nar/gkx1254
Wang, K., Long, B., Jiao, J. Q., Wang, J. X., Liu, J. P., Li, Q., & Li, P. F. (2012). MiR-484 regulates mitochondrial network through targeting Fis1. Nature Communications, 3.
https://doi.org/10.1038/ncomms1770
Wang, K., Sun, T., Li, N., Wang, Y., Wang, J. X., Zhou, L. Y., Long, B., Liu, C. Y., Liu, F., & Li, P. F. (2014). MDRL lncRNA Regulates the Processing of miR-484 Primary Transcript by Targeting miR-361. PLoS Genetics, 10(7).
https://doi.org/10.1371/journal.pgen.1004467
Wang, Y., Bao, W., Liu, Y., Wang, S., Xu, S., Li, X., Li, Y., & Wu, S. (2018). MIR-98-5p contributes to cisplatin resistance in epithelial ovarian cancer by suppressing miR-152 biogenesis via targeting Dicer1. Cell Death and Disease, 9(5).
https://doi.org/10.1038/s41419-018-0390-7
Wu, K., Feng, J., Lyu, F., Xing, F., Sharma, S., Liu, Y., Wu, S. Y., Zhao, D., Tyagi, A., Deshpande, R. P., Pei, X., Ruiz, M. G., Takahashi, H., Tsuzuki, S., Kimura, T., Mo, Y. yuan, Shiozawa, Y., Singh, R., & Watabe, K. (2021). Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer. Nature Communications, 12(1), 1–18. https://doi.org/10.1038/s41467-021-25473-y
Xiao, M., Li, J., Li, W., Wang, Y., Wu, F., Xi, Y., Zhang, L., Ding, C., Luo, H., Li, Y., Peng, L., Zhao, L., Peng, S., Xiao, Y., Dong, S., Cao, J., & Yu, W. (2017). MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biology, 14(10), 1326–1334.
https://doi.org/10.1080/15476286.2015.1112487
Xing, A., Wang, B., Li, Y., Chen, X., Wang, Y., Liu, H., A-y, X., Wang, B., Y-h, L., & Chen, X. (2021). Identification of miRNA Signature in Breast Cancer to Predict Neoadjuvant Chemotherapy Response. 27(April), 1–11.
https://doi.org/10.3389/pore.2021.1609753
Xu, J., Wu, K. jing, Jia, Q. jun, & Ding, X. feng. (2020). Roles of miRNA and IncRNA in triple-negative breast cancer. Journal of Zhejiang University: Science B, 21(9), 673–689.
https://doi.org/10.1631/jzus.B1900709
Zhang, K., Wang, Y. Y., Xu, Y., Zhang, L., Zhu, J., Si, P. C., Wang, Y. W., & Ma, R. (2021). A two-miRNA signature of upregulated miR-185-5p and miR-362-5p as a blood biomarker for breast cancer. Pathology Research and Practice, 222(April), 153458.
https://doi.org/10.1016/j.prp.2021.153458
Zhang, L., Huang, J., Yang, N., Greshock, J., Megraw, M. S., Giannakakis, A., Liang, S., Naylor, T. L., Barchetti, A., Ward, M. R., Yao, G., Medina, A., Brien-jenkins, A. O., Katsaros, D., Hatzigeorgiou, A., Gimotty, P. A., Weber, B. L., & Coukos, G. (2006). microRNAs exhibit high frequency genomic. Proc Natl Acad Sci, 103(24).
Zhang, L., Pan, J., Wang, Z., Yang, C., & Huang, J. (2021). Construction of a MicroRNA-Based Nomogram for Prediction of Lung Metastasis in Breast Cancer Patients. Frontiers in Genetics, 11(February).
https://doi.org/10.3389/fgene.2020.580138
Zhang, X., Pan, Y., Fu, H., & Zhang, J. (2019). microRNA-205 and microRNA-338-3p reduces cell apoptosis in prostate carcinoma tissue and lncap prostate carcinoma cells by directly targeting the B-cell lymphoma 2 (Bcl-2) gene. Medical Science Monitor, 25, 1122–1132.
https://doi.org/10.12659/MSM.912148
Zheng, L., Wang, J., Jiang, H., & Dong, H. (2022). A Novel Necroptosis-Related miRNA Signature for Predicting the Prognosis of Breast Cancer Metastasis. Disease Markers, 2022.
https://doi.org/10.1155/2022/3391878
Zheng, X., Wang, J., Wei, L., Peng, Q., Gao, Y., Fu, Y., Lu, Y., Qin, Z., Zhang, X., Lu, J., Ou, C., Li, Z., Zhang, X., Liu, P., Xion, W., Li, G., Yan, Q., & Ma, J. (2018). Epstein-Barr Virus MicroRNA miR-BART5-3p Inhibits p53 Expression. Journal of Virology, 92(23), 1–16.
Derechos de autor 2026 Jimena Garibay , Yarah P. Ángeles Cortes , Jonnathan G. Santillán Benitez

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.









.png)
















.png)
1.png)

