Diseño de una red LoRa de bajo costo para el monitoreo del sector agrícola

Palabras clave: LoRa, monitoreo, red, agricultura

Resumen

El propósito de la investigación es ayudar a los agricultores que dispongan de dispositivos de bajo costo para el monitoreo en tiempo real de los cultivos para minimizar perdidas por efectos climáticos adversos en zonas de la región Andina del Ecuador. El diseño de la red de largo alcance (LoRa) está constituida por nodos finales, puerta de enlace y plataforma IoT thinger.io para crear la interfaz gráfica de usuario a fin de monitorear y controlar los equipos a distancia. Una de las características de zonas andinas son los terrenos irregulares; los parámetros evaluados son medidos en intervalos de 80m, la red alcanzo una distancia de 805m de cobertura. Para evaluar la sensibilidad de la señal, se ubicó los nodos finales en una quebrada a desniveles de 15m de profundidad donde la vegetación y los árboles, perjudicaron a la señal de comunicación registrando medidas de intensidad de señal recibida RSSI de -126 dBm y relación señal/ruido SNR de -9.25 dB.

Descargas

La descarga de datos todavía no está disponible.

Citas

Bhattacherjee, S. S., Shreeshan, S., Priyanka, G., Jadhav, A. R., Rajalakshmi, P., & Kholova, J. (2020). Cloud based Low-Power Long-Range IoT Network for Soil Moisture monitoring in Agriculture. 2020 IEEE Sensors Applications Symposium (SAS), 1–5. https://doi.org/10.1109/SAS48726.2020.9220017

Codeluppi, G., Cilfone, A., Davoli, L., & Ferrari, G. (2020). LoRaFarM: a LoRaWAN-Based Smart Farming Modular IoT Architecture. https://doi.org/10.3390/s20072028

Deng, F., Zuo, P., Wen, K., & Wu, X. (2020). Novel soil environment monitoring system based on RFID sensor and LoRa. Computers and Electronics in Agriculture, 169, 105169. https://doi.org/10.1016/J.COMPAG.2019.105169

dos Santos, U. J. L., Pessin, G., da Costa, C. A., & da Rosa Righi, R. (2019). AgriPrediction: A proactive internet of things model to anticipate problems and improve production in agricultural crops. Computers and Electronics in Agriculture, 161, 202–213. https://doi.org/10.1016/J.COMPAG.2018.10.010

Elijah, O., Rahim, S. K. A., Sittakul, V., Al-Samman, A. M., Cheffena, M., Din, J. Bin, & Tharek, A. R. (2021). Effect of Weather Condition on LoRa IoT Communication Technology in a Tropical Region: Malaysia. IEEE Access, 9, 72835–72843. https://doi.org/10.1109/ACCESS.2021.3080317

Elshabrawy, T., & Robert, J. (2019). Capacity Planning of LoRa Networks With Joint Noise-Limited and Interference-Limited Coverage Considerations. IEEE Sensors Journal, 19(11), 4340–4348. https://doi.org/10.1109/JSEN.2019.2897156

FAO, F. (2018). The future of food and agriculture: alternative pathways to 2050. Food and Agriculture Organization of the United Nations Rome.

Gutiérrez, S., Martínez, I., Varona, J., Cardona, M., & Espinosa, R. (2019). Smart Mobile LoRa Agriculture System based on Internet of Things. 2019 IEEE 39th Central America and Panama Convention (CONCAPAN XXXIX), 1–6. https://doi.org/10.1109/CONCAPANXXXIX47272.2019.8977109

Ji, M., Yoon, J., Choo, J., Jang, M., & Smith, A. (2019). LoRa-based Visual Monitoring Scheme for Agriculture IoT. 2019 IEEE Sensors Applications Symposium (SAS), 1–6. https://doi.org/10.1109/SAS.2019.8706100

Khalifeh, A., Aldahdouh, K. A., Darabkh, K. A., & Al-Sit, W. (2019). A Survey of 5G Emerging Wireless Technologies Featuring LoRaWAN, Sigfox, NB-IoT and LTE-M. 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), 561–566. https://doi.org/10.1109/WiSPNET45539.2019.9032817

Lee, H.-C., & Ke, K.-H. (2018). Monitoring of Large-Area IoT Sensors Using a LoRa Wireless Mesh Network System: Design and Evaluation. IEEE Transactions on Instrumentation and Measurement, 67(9), 2177–2187. https://doi.org/10.1109/TIM.2018.2814082

Leonardi, L., Battaglia, F., & Lo Bello, L. (2019). RT-LoRa: A Medium Access Strategy to Support Real-Time Flows Over LoRa-Based Networks for Industrial IoT Applications. IEEE Internet of Things Journal, 6(6), 10812–10823. https://doi.org/10.1109/JIOT.2019.2942776

Ma, Y.-W., & Chen, J.-L. (2018). Toward intelligent agriculture service platform with lora-based wireless sensor network. 2018 IEEE International Conference on Applied System Invention (ICASI), 204–207.

Maila, B. R. V., Quinatoa-Arequipa, E., Javier-Guaña, E., & Muirragui-Irrazábal, V. (2019). Performance of wireless links based on the 802.11AC protocol: Ibarra case study - Ecuador. 2019 8th International Conference On Software Process Improvement (CIMPS), 1–8. https://doi.org/10.1109/CIMPS49236.2019.9082419

Migabo, E., Djouani, K., Kurien, A., & Olwal, T. (2017). A comparative survey study on LPWA networks: LoRa and NB-IoT. Proceedings of the Future Technologies Conference (FTC), Vancouver, BC, Canada, 29–30.

Miles, B., Bourennane, E. B., Boucherkha, S., & Chikhi, S. (2020). A study of LoRaWAN protocol performance for IoT applications in smart agriculture. Computer Communications, 164, 148–157. https://doi.org/10.1016/J.COMCOM.2020.10.009

Muteba, F., Djouani, K., & Olwal, T. (2019). A comparative Survey Study on LPWA IoT Technologies: Design, considerations, challenges and solutions. Procedia Computer Science, 155, 636–641. https://doi.org/10.1016/J.PROCS.2019.08.090

Ratasuk, R., Vejlgaard, B., Mangalvedhe, N., & Ghosh, A. (2016). NB-IoT system for M2M communication. 2016 IEEE Wireless Communications and Networking Conference, 1–5. https://doi.org/10.1109/WCNC.2016.7564708

Razfar, M., Castro, J., Labonte, L., Rezaei, R., Ghabrial, F., Shankar, P., Besnard, E., & Abedi, A. (2013). Wireless network design and analysis for real time control of launch vehicles. IEEE International Conference on Wireless for Space and Extreme Environments, 1–2. https://doi.org/10.1109/WiSEE.2013.6737574

Salesforce. (2022). 2022-08-21. https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE

Sanchez-Iborra, R., Sanchez-Gomez, J., Ballesta-Viñas, J., Cano, M.-D., & Skarmeta, A. F. (2018). Performance Evaluation of LoRa Considering Scenario Conditions. https://doi.org/10.3390/s18030772

Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Ali, S., Zaidi, R., & Iqbal, N. (2019). Precision Agriculture Techniques and Practices: From Considerations to Applications. https://doi.org/10.3390/s19173796

Singh, R. K., Aernouts, M., De Meyer, M., Weyn, M., & Berkvens, R. (2020). Leveraging LoRaWAN Technology for Precision Agriculture in Greenhouses. https://doi.org/10.3390/s20071827

Sinha, R. S., Wei, Y., & Hwang, S.-H. (2017). A survey on LPWA technology: LoRa and NB-IoT. Ict Express, 3(1), 14–21.

Tao, W., Zhao, L., Wang, G., & Liang, R. (2021). Review of the internet of things communication technologies in smart agriculture and challenges. Computers and Electronics in Agriculture, 189, 106352. https://doi.org/10.1016/J.COMPAG.2021.106352

Valente, A., Silva, S., Duarte, D., Pinto, F. C., & Soares, S. (2020). Low-cost lorawan node for agro-intelligence iot. https://doi.org/10.3390/electronics9060987

Widyawan Prakosa, S., Faisal, M., Adhitya, Y., Leu, J.-S., Köppen, M., & Avian, C. (2021). Design and Implementation of LoRa Based IoT Scheme for Indonesian Rural Area. https://doi.org/10.3390/electronics10010077

Xu, J., Gu, B., & Tian, G. (2022). Review of agricultural IoT technology. Artificial Intelligence in Agriculture, 6, 10–22. https://doi.org/10.1016/J.AIIA.2022.01.001

Zhang, X., Zhang, M., Meng, F., Qiao, Y., Xu, S., & Hour, S. (2019). A Low-Power Wide-Area Network Information Monitoring System by Combining NB-IoT and LoRa. IEEE Internet of Things Journal, 6(1), 590–598. https://doi.org/10.1109/JIOT.2018.2847702

Publicado
2022-09-29
Cómo citar
Mañay Chochos, E. D., Chicaiza Yugcha, O. F., Orozco Manobanda, I. A., Chiliquinga, M. D., Martínez Guamán, C. J., & Guzmán Paillacho, C. A. (2022). Diseño de una red LoRa de bajo costo para el monitoreo del sector agrícola. Ciencia Latina Revista Científica Multidisciplinar, 6(5), 104-120. https://doi.org/10.37811/cl_rcm.v6i5.3063
Sección
Artículos