Diseño de una red LoRa de bajo costo para el monitoreo del sector agrícola
Resumen
El propósito de la investigación es ayudar a los agricultores que dispongan de dispositivos de bajo costo para el monitoreo en tiempo real de los cultivos para minimizar perdidas por efectos climáticos adversos en zonas de la región Andina del Ecuador. El diseño de la red de largo alcance (LoRa) está constituida por nodos finales, puerta de enlace y plataforma IoT thinger.io para crear la interfaz gráfica de usuario a fin de monitorear y controlar los equipos a distancia. Una de las características de zonas andinas son los terrenos irregulares; los parámetros evaluados son medidos en intervalos de 80m, la red alcanzo una distancia de 805m de cobertura. Para evaluar la sensibilidad de la señal, se ubicó los nodos finales en una quebrada a desniveles de 15m de profundidad donde la vegetación y los árboles, perjudicaron a la señal de comunicación registrando medidas de intensidad de señal recibida RSSI de -126 dBm y relación señal/ruido SNR de -9.25 dB.
Descargas
Citas
Bhattacherjee, S. S., Shreeshan, S., Priyanka, G., Jadhav, A. R., Rajalakshmi, P., & Kholova, J. (2020). Cloud based Low-Power Long-Range IoT Network for Soil Moisture monitoring in Agriculture. 2020 IEEE Sensors Applications Symposium (SAS), 1–5. https://doi.org/10.1109/SAS48726.2020.9220017
Codeluppi, G., Cilfone, A., Davoli, L., & Ferrari, G. (2020). LoRaFarM: a LoRaWAN-Based Smart Farming Modular IoT Architecture. https://doi.org/10.3390/s20072028
Deng, F., Zuo, P., Wen, K., & Wu, X. (2020). Novel soil environment monitoring system based on RFID sensor and LoRa. Computers and Electronics in Agriculture, 169, 105169. https://doi.org/10.1016/J.COMPAG.2019.105169
dos Santos, U. J. L., Pessin, G., da Costa, C. A., & da Rosa Righi, R. (2019). AgriPrediction: A proactive internet of things model to anticipate problems and improve production in agricultural crops. Computers and Electronics in Agriculture, 161, 202–213. https://doi.org/10.1016/J.COMPAG.2018.10.010
Elijah, O., Rahim, S. K. A., Sittakul, V., Al-Samman, A. M., Cheffena, M., Din, J. Bin, & Tharek, A. R. (2021). Effect of Weather Condition on LoRa IoT Communication Technology in a Tropical Region: Malaysia. IEEE Access, 9, 72835–72843. https://doi.org/10.1109/ACCESS.2021.3080317
Elshabrawy, T., & Robert, J. (2019). Capacity Planning of LoRa Networks With Joint Noise-Limited and Interference-Limited Coverage Considerations. IEEE Sensors Journal, 19(11), 4340–4348. https://doi.org/10.1109/JSEN.2019.2897156
FAO, F. (2018). The future of food and agriculture: alternative pathways to 2050. Food and Agriculture Organization of the United Nations Rome.
Gutiérrez, S., Martínez, I., Varona, J., Cardona, M., & Espinosa, R. (2019). Smart Mobile LoRa Agriculture System based on Internet of Things. 2019 IEEE 39th Central America and Panama Convention (CONCAPAN XXXIX), 1–6. https://doi.org/10.1109/CONCAPANXXXIX47272.2019.8977109
Ji, M., Yoon, J., Choo, J., Jang, M., & Smith, A. (2019). LoRa-based Visual Monitoring Scheme for Agriculture IoT. 2019 IEEE Sensors Applications Symposium (SAS), 1–6. https://doi.org/10.1109/SAS.2019.8706100
Khalifeh, A., Aldahdouh, K. A., Darabkh, K. A., & Al-Sit, W. (2019). A Survey of 5G Emerging Wireless Technologies Featuring LoRaWAN, Sigfox, NB-IoT and LTE-M. 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), 561–566. https://doi.org/10.1109/WiSPNET45539.2019.9032817
Lee, H.-C., & Ke, K.-H. (2018). Monitoring of Large-Area IoT Sensors Using a LoRa Wireless Mesh Network System: Design and Evaluation. IEEE Transactions on Instrumentation and Measurement, 67(9), 2177–2187. https://doi.org/10.1109/TIM.2018.2814082
Leonardi, L., Battaglia, F., & Lo Bello, L. (2019). RT-LoRa: A Medium Access Strategy to Support Real-Time Flows Over LoRa-Based Networks for Industrial IoT Applications. IEEE Internet of Things Journal, 6(6), 10812–10823. https://doi.org/10.1109/JIOT.2019.2942776
Ma, Y.-W., & Chen, J.-L. (2018). Toward intelligent agriculture service platform with lora-based wireless sensor network. 2018 IEEE International Conference on Applied System Invention (ICASI), 204–207.
Maila, B. R. V., Quinatoa-Arequipa, E., Javier-Guaña, E., & Muirragui-Irrazábal, V. (2019). Performance of wireless links based on the 802.11AC protocol: Ibarra case study - Ecuador. 2019 8th International Conference On Software Process Improvement (CIMPS), 1–8. https://doi.org/10.1109/CIMPS49236.2019.9082419
Migabo, E., Djouani, K., Kurien, A., & Olwal, T. (2017). A comparative survey study on LPWA networks: LoRa and NB-IoT. Proceedings of the Future Technologies Conference (FTC), Vancouver, BC, Canada, 29–30.
Miles, B., Bourennane, E. B., Boucherkha, S., & Chikhi, S. (2020). A study of LoRaWAN protocol performance for IoT applications in smart agriculture. Computer Communications, 164, 148–157. https://doi.org/10.1016/J.COMCOM.2020.10.009
Muteba, F., Djouani, K., & Olwal, T. (2019). A comparative Survey Study on LPWA IoT Technologies: Design, considerations, challenges and solutions. Procedia Computer Science, 155, 636–641. https://doi.org/10.1016/J.PROCS.2019.08.090
Ratasuk, R., Vejlgaard, B., Mangalvedhe, N., & Ghosh, A. (2016). NB-IoT system for M2M communication. 2016 IEEE Wireless Communications and Networking Conference, 1–5. https://doi.org/10.1109/WCNC.2016.7564708
Razfar, M., Castro, J., Labonte, L., Rezaei, R., Ghabrial, F., Shankar, P., Besnard, E., & Abedi, A. (2013). Wireless network design and analysis for real time control of launch vehicles. IEEE International Conference on Wireless for Space and Extreme Environments, 1–2. https://doi.org/10.1109/WiSEE.2013.6737574
Salesforce. (2022). 2022-08-21. https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
Sanchez-Iborra, R., Sanchez-Gomez, J., Ballesta-Viñas, J., Cano, M.-D., & Skarmeta, A. F. (2018). Performance Evaluation of LoRa Considering Scenario Conditions. https://doi.org/10.3390/s18030772
Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Ali, S., Zaidi, R., & Iqbal, N. (2019). Precision Agriculture Techniques and Practices: From Considerations to Applications. https://doi.org/10.3390/s19173796
Singh, R. K., Aernouts, M., De Meyer, M., Weyn, M., & Berkvens, R. (2020). Leveraging LoRaWAN Technology for Precision Agriculture in Greenhouses. https://doi.org/10.3390/s20071827
Sinha, R. S., Wei, Y., & Hwang, S.-H. (2017). A survey on LPWA technology: LoRa and NB-IoT. Ict Express, 3(1), 14–21.
Tao, W., Zhao, L., Wang, G., & Liang, R. (2021). Review of the internet of things communication technologies in smart agriculture and challenges. Computers and Electronics in Agriculture, 189, 106352. https://doi.org/10.1016/J.COMPAG.2021.106352
Valente, A., Silva, S., Duarte, D., Pinto, F. C., & Soares, S. (2020). Low-cost lorawan node for agro-intelligence iot. https://doi.org/10.3390/electronics9060987
Widyawan Prakosa, S., Faisal, M., Adhitya, Y., Leu, J.-S., Köppen, M., & Avian, C. (2021). Design and Implementation of LoRa Based IoT Scheme for Indonesian Rural Area. https://doi.org/10.3390/electronics10010077
Xu, J., Gu, B., & Tian, G. (2022). Review of agricultural IoT technology. Artificial Intelligence in Agriculture, 6, 10–22. https://doi.org/10.1016/J.AIIA.2022.01.001
Zhang, X., Zhang, M., Meng, F., Qiao, Y., Xu, S., & Hour, S. (2019). A Low-Power Wide-Area Network Information Monitoring System by Combining NB-IoT and LoRa. IEEE Internet of Things Journal, 6(1), 590–598. https://doi.org/10.1109/JIOT.2018.2847702
Derechos de autor 2022 Edison David Mañay Chochos;Oscar Fabricio Chicaiza Yugcha;Israel Antonio Orozco Manobanda;Mauricio D. Chiliquinga;Carlos Julio Martínez Guamán;Carmen Alexandra Guzmán Paillacho

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.