Modulación diferencial de la actividad enzimática lítica de la pared celular entre Trichoderma sp. y Bacillus subtilis durante el biocontrol de Colletotrichum gloeosporioides in vitro
Resumen
Colletotrichum gloeosporioides (agente causal de la antracnosis) genera pérdidas significativas en diversos cultivos. Es necesario desarrollar alternativas al control químico para combatir esta enfermedad. En este estudio, se evaluó la eficacia de los tratamientos simples o combinados de Trichoderma sp. y Bacillus subtilis sobre C. gloeosporioides en agar papa dextrosa (PDA) y Luria Bertani (LB). La actividad antagónica individual de Trichoderma sp. y B. subtilis fue mayor en LB. Se observó un efecto diferencial del grado de inhibición y de la actividad hidrolítica en algunas combinaciones de Trichoderma y Bacillus. Sin embargo, la combinación de Trichoderma T2 y B. subtilis mostró compatibilidad, ambas cepas mostraron actividad celulolítica y quitinolítica estable. Por otro lado, el micelio desactivado de C. gloeosporioides estimuló las actividades endo-β-1,3-glucanasa, endo-β-1,4-glucanasa y β-N-acetilhexosaminidasa de B. subtilis y de las cepas de Trichoderma (T2 y T3) excepto la β-N-acetilhexosaminidasa de Trichoderma T1. En el sistema tripartito la actividad hidrolítica disminuyó en la mayoría de los sistemas, aunque la actividad β-N-acetilhexosaminidasa incrementó notablemente. Estos resultados sugieren que la combinación de Trichoderma T2 y B. subtilis posee potencial antagónico sobre C. gloeosporioides independientemente del contenido nutricional, por lo que esta mezcla se podría emplear para el tratamiento de la antracnosis.
Descargas
Citas
Admasu, W., Sahile, S., & Kibret, M. (2014). Assessment of potential antagonists for anthracnose (Colletotrichum gloeosporioides) disease of mango (Mangifera indica L.) in North Western Ethiopia (Pawe). Archives of Phytopathology and Plant Protection, 47(18), 2176-2186. doi: https://doi.org/10.1080/03235408.2013.870110
Ajay Kumar, G. (2014). Colletotrichum gloeosporioides: biology, pathogenicity and management in India. J Plant Physiol Pathol 2, 2, 2. doi: https://doi.org/10.4172/2329-955X.1000125
Anwar, J. and Z. Iqbal. 2017. Effect of growth conditions on antibacterial activity of Trichoderma harzianum against selected pathogenic bacteria. Sarhad Journal of Agriculture, 33(4): 501-510. doi: http://dx.doi.org/10.17582/journal.sja/2017/33.4.501.510
Ashwini, N., & Srividya, S. (2014). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech, 4(2), 127-136. doi: https://doi.org/10.1007/s13205-013-0134-4
Baroncelli, R., Talhinhas, P., Pensec, F., Sukno, S. A., Le Floch, G., & Thon, M. R. (2017). The Colletotrichum acutatum species complex as a model system to study evolution and host specialization in plant pathogens. Frontiers in Microbiology, 8(2001). doi: https://doi.org/10.3389/fmicb.2017.02001
Baukaew, S., Petlamul, W., Suyotha, W., & Prasertsan, P. (2016). Simultaneous fermentative chitinase and beta-1,3 glucanase production from Streptomyces philanthi RM-1-1-38 and their antifungal activity against rice sheath blight disease. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology, 97(4), 271-284. doi: https://doi.org/10.5114/bta.2016.64544
Blackburn, D., Shapiro-Ilan, D. I., & Adams, B. J. (2016). Biological control and nutrition: Food for thought. Biological Control, 97, 131-138. https://doi.org/10.1016/j.biocontrol.2016.03.007
Bourne, R. (2010). ImageJ. In Fundamentals of digital imaging in medicine (pp. 185-188). Springer, London. doi: https://doi.org/10.1007/978-1-84882-087-6_9
Braga, R. M., Dourado, M. N., & Araújo, W. L. (2016). Microbial interactions: ecology in a molecular perspective. Brazilian journal of microbiology, 47, 86-98. doi: https://doi.org/10.1016/j.bjm.2016.10.005
Bruce, B. A., Wheatley, R. E., Humphris, S. N., Hackett, C. A., and Florence, M. E. J. (2000). Production of volatile organic compounds by Trichoderma in media containing different amino acids and their effect on selected wood decay fungi. De Gruyter 54, 481–486. doi: https://doi.org/10.1515/HF.2000.081
Cosetta, C. M., & Wolfe, B. E. (2019). Causes and consequences of biotic interactions within microbiomes. Current opinion in microbiology, 50, 35-41. doi: https://doi.org/10.1016/j.mib.2019.09.004
da Silva Aires, R., Steindorff, A. S., Ramada, M. H. S., de Siqueira, S. J. L., & Ulhoa, C. J. (2012). Biochemical characterization of a 27 kDa 1, 3-β-D-glucanase from Trichoderma asperellum induced by cell wall of Rhizoctonia solani. Carbohydrate polymers, 87(2), 1219-1223. doi: https://doi.org/10.1016/j.carbpol.2011.09.001
De Silva, D. D., Crous, P. W., Ades, P. K., Hyde, K. D., & Taylor, P. W. (2017). Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biology Reviews, 31(3), 155-168. doi: https://doi.org/10.1016/j.fbr.2017.05.001
Deka, D., Bhargavi, P., Sharma, A., Goyal, D., Jawed, M., & Goyal, A. (2011). Enhancement of cellulase activity from a new strain of Bacillus subtilis by medium optimization and analysis with various cellulosic substrates. Enzyme research, 2011, 1-8. doi: https://doi.org/10.4061/2011/151656
Djami-Tchatchou, A. T., Allie, F., & Straker, C. J. (2013). Expression of defence-related genes in avocado fruit (cv. Fuerte) infected with Colletotrichum gloeosporioides. South African journal of botany, 86, 92-100. doi: https://doi.org/10.1016/j.sajb.2013.02.166
El-Katatny, M. H., Somitsch, W., Robra, K. H., El-Katatny, M. S., & Gübitz, G. M. (2000). Production of chitinase and β-1, 3-glucanase by Trichoderma harzianum for control of the phytopathogenic fungus Sclerotium rolfsii. Food Technology and Biotechnology, 38(3), 173-180. Available from https://www.ftb.com.hr/archives/89-table-of-content/1064-table-of-contents-july-september-2000
Emanuel, R.V., César Arturo, P.U., Lourdes Iveth, M.R. Homero R de la C., and Mauricio Nahuam C.A. (2020) In vitro growth of Colletotrichum gloeosporioides is affected by butyl acetate, a compound produced during the co-culture of Trichoderma sp. and Bacillus subtilis. 3 Biotech 10, 329. doi: https://doi.org/10.1007/s13205-020-02324-z
Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M., & Sarniguet, A. (2011). Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol. Mol. Biol. Rev., 75(4), 583-609. doi: https://doi.org/10.1128/MMBR.00020-11
Gajbhiye, A., Rai, A. R., Meshram, S. U., & Dongre, A. B. (2010). Isolation, evaluation and characterization of Bacillus subtilis from cotton rhizospheric soil with biocontrol activity against Fusarium oxysporum. World Journal of Microbiology and Biotechnology, 26(7), 1187-1194. doi: https://doi.org/10.1007/s11274-009-0287-9
Ghazanfar, M. U., Raza, M., Raza, W., & Qamar, M. I. (2018). Trichoderma as potential biocontrol agent, its exploitation in agriculture: a review. Plant Protection, 2(3). Available from https://esciencepress.net/journals/index.php/PP/article/view/3142/1571
Gruber, S., & Seidl-Seiboth, V. (2012). Self-versus non-self: fungal cell wall degradation in Trichoderma. Microbiology, 158(1), 26-34. doi: https://doi.org/10.1099/mic.0.052613-0
Guzmán-Guzmán, P., Porras-Troncoso, M. D., Olmedo-Monfil, V., & Herrera-Estrella, A. (2019). Trichoderma species: versatile plant symbionts. Phytopathology, 109(1), 6-16. doi: https://doi.org/10.1094/PHYTO-07-18-0218-RVW
Hussain, A., Raziq, F., & Khan, H. (2008). In vitro integrated control of Colletotrichum gloeosporioides with biological and chemical agents. Sarhad J. Agric., 24(1), 79. Available from http://www.aup.edu.pk/sj_pdf/In%20vitro%20integrated%20control%20of%20colletotrichum=128-2007.pdf
Jambhulkar, P. P., Sharma, P., Manokaran, R., Lakshman, D. K., Rokadia, P., & Jambhulkar, N. (2018). Assessing synergism of combined applications of Trichoderma harzianum and Pseudomonas fluorescens to control blast and bacterial leaf blight of rice. European journal of plant pathology, 152(3), 747-757. doi: https://doi.org/10.1007/s10658-018-1519-3
Javaheri-Kermani, M., & Asoodeh, A. (2019). A novel beta-1,4 glucanase produced by symbiotic Bacillus sp. CF96 isolated from termite (Anacanthotermes). International journal of biological macromolecules, 131, 752-759. doi: https://doi.org/10.1016/j.ijbiomac.2019.03.124
Joshi, R., & McSpadden Gardener, B. B. (2006). Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Phytopathology, 96(2), 145-154. doi: https://doi.org/10.1094/PHYTO-96-0145
Kamle, M., & Kumar, P. (2016). Colletotrichum gloeosporioides: Pathogen of anthracnose disease in mango (Mangifera indica L.). In Current Trends in Plant Disease Diagnostics and Management Practices (pp. 207-219). Springer, Cham. doi: https://doi.org/10.1007/978-3-319-27312-9_9
Kappel, L., Münsterkötter, M., Sipos, G., Escobar Rodriguez, C., & Gruber, S. (2020). Chitin and chitosan remodeling defines vegetative development and Trichoderma biocontrol. PLoS Pathogens, 16(2), e1008320. doi: https://doi.org/10.1371/journal.ppat.1008320
Karimi, K., Ahari, A. B., Arzanlou, M., Amini, J., & Pertot, I. (2017). Comparison of indigenous Trichoderma spp. strains to a foreign commercial strain in terms of biocontrol efficacy against Colletotrichum nymphaeae and related biological features. Journal of Plant Diseases and Protection, 124(5), 453-466. doi: https://doi.org/10.1007/s41348-017-0088-6
Kefialew, Y., & Ayalew, A. (2008). Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica). Postharvest Biology and Technology, 50(1), 8-11. doi: https://doi.org/10.1016/j.postharvbio.2008.03.007
Khare, E., Kumar, S., & Kim, K. (2018). Role of peptaibols and lytic enzymes of Trichoderma cerinum Gur1 in biocontrol of Fusarium oxysporum and chickpea wilt. Environmental Sustainability, 1(1), 39-47. doi: https://doi.org/10.1007/s42398-018-0022-2.
Kim, P. I., Ryu, J., Kim, Y. H., & Chi, Y. T. (2010). Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol, 20(1), 138-145. doi: https://doi.org/10.4014/jmb.0905.05007
Mestre, P., Arista, G., Piron, M. C., Rustenholz, C., Ritzenthaler, C., Merdinoglu, D., & Chich, J. F. (2017). Identification of a Vitis vinifera endo‐β‐1,3‐glucanase with antimicrobial activity against Plasmopara viticola. Molecular plant pathology, 18(5), 708-719. doi: https://doi.org/10.1111/mpp.12431
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428. doi: https://doi.org/10.1021/ac60147a030
Mustafa, A., Khan, M. A., Inam-ul-Haq, M., Pervez, M. A., & Umar, U. (2009). Usefulness of different culture media for in vitro evaluation of Trichoderma spp. against seed borne fungi of economic importance. Pakistan Journal of Phytopathology, 21(1), 83-88. Available from https://scholar.google.com/scholar?hl=es&as_sdt=0%2C5&q=Usefulness+of+different+culture+media+for+in+vitro+evaluation+of+Trichoderma+spp.+against+seed+borne+fungi+of+economic+importance&btnG=
Roberts, W. K., & Selitrennikoff, C. P. (1988). Plant and bacterial chitinases differ in antifungal activity. Journal of General Microbiology, 134(1), 169-176. Available from https://pdfs.semanticscholar.org/da0c/5234cd4e8b429c653503c75adb811d82bea6.pdf
Rodríguez-López, E. S., González-Prieto, J. M., & Mayek-Pérez, N. (2009). La infección de Colletotrichum gloeosporioides (Penz.) Penz. y Sacc. en aguacatero (Persea americana Mill.): Aspectos bioquímicos y genéticos. Revista mexicana de fitopatología, 27(1), 53-63. Available from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33092009000100007
Sambrook J. & Russell D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Available from https://nla.gov.au/nla.cat-vn2284148
Sahin, S., Ozmen, İ., & Biyik, H. H. (2013). Purification and characterization of endo-β-1,4-glucanase from local isolate Trichoderma ouroviride. International Journal of Bioscience, Biochemistry and Bioinformatics, 3(2), 129. doi: https://doi.org/10.7763/IJBBB.2013.V3.180
Sazci, A., Erenler, K., & Radford, A. (1986). Detection of cellulolytic fungi by using Congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method. Journal of Applied Bacteriology, 61(6), 559-562. doi: https://doi.org/10.1111/j.1365-2672.1986.tb01729.x
Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment, 31(3), 446-459. https://doi.org/10.1080/13102818.2017.1286950
Singh, N., Pandey, P., Dubey, R. C., & Maheshwari, D. K. (2008). Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World Journal of Microbiology and Biotechnology, 24(9), 1669. doi: https://doi.org/10.1007/s11274-008-9680-z
Than, P. P., Prihastuti, H., Phoulivong, S., Taylor, P. W., & Hyde, K. D. (2008). Chilli anthracnose disease caused by Colletotrichum species. Journal of Zhejiang University Science B, 9(10), 764. doi: https://doi.org/10.1631/jzus.B0860007
Tang, L., Mo, J., Guo, T., Huang, S., Li, Q., Ning, P., & Hsiang, T. (2019). Antifungal effects of dimethyl trisulfide against Colletotrichum gloeosporioides infection on mango. Journal of Phytopathology, 167(7-8), 445-450. doi: https://doi.org/10.1111/jph.12816
Tapia, R. A., Ramírez, D. J., Salgado, S. M., Castañeda. V. Á., Maldonado, Z. F., & Lara, D. A. (2020). Spatial distribution of anthracnose (Colletotrichum gloeosporioides Penz) in avocado in the State of Mexico, Mexico. Revista Argentina de microbiologia, 52(1), 72-81. doi: https://doi.org/10.1016/j.ram.2019.07.004
Ting, A. S. Y., & Chai, J. Y. (2015). Chitinase and β-1,3-glucanase activities of Trichoderma harzianum in response towards pathogenic and non-pathogenic isolates: Early indications of compatibility in consortium. Biocatalysis and Agricultural Biotechnology, 4(1), 109-113. doi: https://doi.org/10.1016/j.bcab.2014.10.003
Udhayakumar, R., Usharani, S., & Muthukumar, A. (2019). Effect of bacterial antagonists on the in vitro production of cellulolytic and pectinolytic enzymes by Colletotrichum gloeosporioides. Plant Archives, 19(1), 923-926. Available from http://www.plantarchives.org/PDF%2019-1/923-926%20(4605).pdf
Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10. doi: https://doi.org/10.1016/j.soilbio.2007.07.002
Welideniya, W. A., Rienzie, K. D. R. C., Wickramaarachchi, W. A. R. T., & Aruggoda, A. G. B. (2019). Characterization of fungal pathogens causing anthracnose in capsicum pepper (Capsicum annuum L.) and their seed borne nature. Ceylon Journal of Science, 48(3), 261-269. doi: https://doi.org/10.4038/cjs.v48i3.7650
Yang, H. H., Yang, S. L., Peng, K. C., Lo, C. T., & Liu, S. Y. (2009). Induced proteome of Trichoderma harzianum by Botrytis cinerea. Mycological research, 113(9), 924-932. doi: https://doi.org/10.1016/j.mycres.2009.04.004
Yoo, J. H., Lee, Y. J., Park, B. S., Lee, S. E., Kim, Y. K., Seo, J. S., ... & Joo, J. H. (2009). Isolation and bioactivity of Bacillus sp. YJH-051 against Colletotrichum gloeosporioides, the fungal pathogen for anthracnose disease on peppers. Biological agriculture & horticulture, 26(4), 399-409. doi: https://doi.org/10.1080/01448765.2009.9755098
Zeilinger, S., & Omann, M. (2007). Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. Gene regulation and systems biology, 1, GRSB-S397. doi: https://doi.org/10.4137/GRSB.S397
Zhang, F., Yang, X., Ran, W., & Shen, Q. (2014). Fusarium oxysporum induces the production of proteins and volatile organic compounds by Trichoderma harzianum T-E5. FEMS microbiology letters, 359(1), 116-123. doi: https://doi.org/10.1111/1574-6968.12582
Živković, S., Stojanović, S., Ivanović, Ž., Gavrilović, V., Popović, T., & Balaž, J. (2010). Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Archives of Biological Sciences, 62(3), 611-623. doi: https://doi.org/10.2298/ABS1003611Z
Derechos de autor 2022 Paula Itzel Bautista-Ortega ; Irving Hernández-Hernández;Rubén Pérez-Pérez ;Soria-Leal Lizeth Yazmín Soria-Leal; Mauricio Nahuam Chávez-Avilés

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.