Análisis sobre la actividad científica referente a las estrategias de climatización pasiva usada en invernaderos: Parte 2: análisis técnico

Palabras clave: energía solar, tipo de invernadero, bomba de calor, microclima, optimización climática, agrovoltaica

Resumen

La producción agrícola en cultivos bajo invernadero cobra cada mas relevancia a nivel mundial, esto no es una excepción en Latinoamérica y el Caribe, donde cada año las áreas bajo este sistema de cultivo, crecen en superficie y en diversidad de cultivos. Así mismo los efectos del cambio climático o de algunos fenómenos de variabilidad climática, propician que en el interior de las principales estructuras de invernadero implementadas en algunas ocasiones se generen condiciones de microclima inadecuadas para el crecimiento y desarrollo de las plantas, afectado los rendimientos de los cultivos y por ende en la sostenibilidad de este tipo de sistemas de producción de alimentos. También es importante mencionar que, en algunos países subdesarrollados debido a la condición económica local, no es posible la implementación de sistemas de climatización activa, así mismo en países desarrollados donde esta practica ya esta establecida hace mas de 4 décadas, existe un interés permanente de reducir el uso de combustibles fósiles asociados a prácticas de climatización debido al costo económico y ambiental. Por lo tanto, en los últimos años han cobrado importancia las innovaciones tecnológicas que permiten la implementación de sistemas de climatización pasiva para la adecuación microclimatica de invernaderos. En este trabajo se realizó una recopilación de mas de 350 estudios desarrollados a nivel mundial desde el año 2005, de cado uno de estos trabajos se rescató y analizo la información técnica relevante. Los resultados encontrados permitieron identificar que el uso de estos sistemas puede aumentar la producción de hortalizas como el tomate en mas de un 35% y permiten reducir el uso de combustibles fósiles en mas del 50%, lo cual genera menores costos económico y ambientales, contribuyendo como tala a la sostenibilidad de la producción de alimentos.

Descargas

La descarga de datos todavía no está disponible.

Citas

Akrami, M., Javadi, A. A., Hassanein, M. J., Farmani, R., Dibaj, M., Tabor, G. R., & Negm, A. (2020). Study of the effects of vent configuration on mono-span greenhouse ventilation using computational fluid dynamics. Sustainability (Switzerland). https://doi.org/10.3390/su12030986

Auce, A., Jermuss, A., Rucins, A., Ivanovs, S., & Grinbergs, U. (2021). Study of the Distribution of Air Temperature in a Greenhouse Heated By Air to Air Heat Pump. ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference, 1, 17–22.

Baeza, E. J., & Kacira, M. (2017). Greenhouse technology for cultivation in arid and semi-arid regions. Acta Horticulturae, 1170, 17–29. https://doi.org/10.17660/ActaHortic.2017.1170.2

Baxevanou, C., Fidaros, D., Bartzanas, T., & Kittas, C. (2010). Numerical simulation of solar radiation, air flow and temperature distribution in a naturally ventilated tunnel greenhouse. Agricultural Engineering International: CIGR Journal, 12(3–4), 48–67. http://www.cigrjournal.org/index.php/Ejounral/article/view/1643

Bazgaou, A., Fatnassi, H., Bouharroud, R., Ezzaeri, K., Gourdo, L., Wifaya, A., Demrati, H., Elame, F., Carreño-Ortega, Bekkaoui, A., Aharoune, A., & Bouirden, L. (2021). Effect of active solar heating system on microclimate, development, yield and fruit quality in greenhouse tomato production. Renewable Energy. https://doi.org/10.1016/j.renene.2020.11.007

Bazgaou, A., Fatnassi, H., Bouhroud, R., Gourdo, L., Ezzaeri, K., Tiskatine, R., Demrati, H., Wifaya, A., Bekkaoui, A., Aharoune, A., & Bouirden, L. (2018). An experimental study on the effect of a rock-bed heating system on the microclimate and the crop development under canarian greenhouse. Solar Energy. https://doi.org/10.1016/j.solener.2018.10.027

Belov, V. V, Belov, E. L., & Sharonova, T. V. (2020). Evaluation of the effectiveness of a helio-greenhouse with soil heating. IOP Conference Series: Earth and Environmental Science, 604(1), 12021.

Betancourt, K. G., de Zayas Pérez, M. R., & Guitián, M. V. G. (2013). Análisis bibliométrico de las publicaciones relacionadas con proyectos de innovación y su gestión en Scopus, en el período 2001-2011. Revista Cubana de Información En Ciencias de La Salud (ACIMED), 24(3), 281–294.

Blanco, I., Pascuzzi, S., Anifantis, A. S., & Scarascia-Mugnozza, G. (2014). Study of a pilot photovoltaic-electrolyser-fuel cell power system for a geothermal heat pump heated greenhouse and evaluation of the electrolyser efficiency and operational mode. Journal of Agricultural Engineering, 45(3), 111–118.

Bojaca, C.R., Monsalve, O., Casilimas. H., Villagran, E.A., Gil, R. , Arias, L.A., Fuentes, L. E. (2012). Manual de producción de pimenton bajo invernadero (2012th ed.). http://avalon.utadeo.edu.co/servicios/ebooks/manual_pimenton/files/assets/common/downloads/Manual de producci.pdf

Chahidi, L. O., Fossa, M., Priarone, A., & Mechaqrane, A. (2021). Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate–A case study. Applied Energy, 282, 116156.

Chen, C., Ling, H., Zhai, Z. J., Li, Y., Yang, F., Han, F., & Wei, S. (2018). Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses. Applied Energy, 216, 602–612.

Diaz, D. C., Bojacá, C. R., & Schrevens, E. (2018). Modeling the suitability of the traditional plastic greenhouse for tomato production across Colombian regions. Acta Horticulturae. https://doi.org/10.17660/actahortic.2018.1205.109

El Kolaly, W., Ma, W., Li, M., & Darwesh, M. (2020). The investigation of energy production and mushroom yield in greenhouse production based on mono photovoltaic cells effect. Renewable Energy, 159, 506–518.

Firfiris, V. K., Fragos, V. P., Kotsopoulos, T. A., & Nikita-Martzopoulou, C. (2020). Energy and environmental analysis of an innovative greenhouse structure towards frost prevention and heating needs conservation. Sustainable Energy Technologies and Assessments, 40. https://doi.org/10.1016/j.seta.2020.100750

Flores-Velazquez, J., Akrami, M., & Villagrán, E. (2022). The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops. Agronomy, 12(11), 2593.

Flores-Velázquez, J., Villarreal-Guerrero, F., Rojano-Aguilar, A., & Rojano, F. (2014). Greenhouse air dynamics in foliage. Acta Horticulturae, 1037, 1035–1042. https://doi.org/10.17660/actahortic.2014.1037.136

Flores-Velazquez, J., Villarreal-Guerrero, F., Rojano-Aguilar, A., & Schdmith, U. (2019). CFD to analyze energy exchange by convection in a closed greenhouse with a pipe heating system. Acta Universitaria. https://doi.org/10.15174/au.2019.2112

Flores-Velázquez, Jorge, Rojano, F., Aguilar-Rodríguez, C. E., Villagran, E., & Villarreal-Guerrero, F. (2022). Greenhouse Thermal Effectiveness to Produce Tomatoes Assessed by a Temperature-Based Index. Agronomy, 12(5), 1158.

Gil, R., Bojacá-Aldana, C. R., Casilimas, H., Schrevens, E., & Suay, R. (2012). Assessment of sidewall and roof vents opening configurations to improve airflow inside greenhouses. Acta Horticulturae, 952, 141–146. https://doi.org/10.17660/ActaHortic.2012.952.16

Gourdo, L., Fatnassi, H., Bouharroud, R., Ezzaeri, K., Bazgaou, A., Wifaya, A., Demrati, H., Bekkaoui, A., Aharoune, A., Poncet, C., & Bouirden, L. (2019). Heating canarian greenhouse with a passive solar water–sleeve system: Effect on microclimate and tomato crop yield. Solar Energy. https://doi.org/10.1016/j.solener.2019.07.004

Guan, Y., Chen, C., Han, Y., Ling, H., & Yan, Q. (2015). Experimental and modelling analysis of a three-layer wall with phase-change thermal storage in a Chinese solar greenhouse. Journal of Building Physics. https://doi.org/10.1177/1744259114526350

Ha, T., Lee, I., Hwang, H., Hong, S. W., Seo, I., & Bitog, J. P. (2011). Development of an Assessment Model for Greenhouse Using Geothermal heat pump system. 2011 Louisville, Kentucky, August 7-10, 2011, 1.

Haldorai, S., Gurusamy, S., & Pradhapraj, M. (2019). A review on thermal energy storage systems in solar air heaters. International Journal of Energy Research, 43(12), 6061–6077.

Hosseini-Fashami, F., Motevali, A., Nabavi-Pelesaraei, A., Hashemi, S. J., & Chau, K. (2019). Energy-Life cycle assessment on applying solar technologies for greenhouse strawberry production. Renewable and Sustainable Energy Reviews, 116, 109411.

Kitta, E., Katsoulas, N., & Savvas, D. (2012). Shading effects on greenhouse microclimate and crop transpiration in a cucumber crop grown under Mediterranean conditions. Applied Engineering in Agriculture, 28(1), 129–140.

Kwag, B. C., & Krarti, M. (2012). Energy Efficiency Design Strategies for Greenhouse in Colorado. Energy Sustainability, 44816, 111–117.

Lee, C.-G., Cho, L.-H., Kim, S.-J., Park, S.-Y., & Kim, D.-H. (2021). Comparative analysis of combined heating systems involving the use of renewable energy for greenhouse heating. Energies, 14(20). https://doi.org/10.3390/en14206603

Lee, J.-Y., & Choi, H.-M. (2012). Use of underground air for a heating and cooling energy source on Jeju Volcanic Island of Korea. International Journal of Green Energy, 9(7), 597–611.

López-Diaz, J. H., Fitz-Rodríguez, E., & Rosales-Vicelis, J. E. (2018). Evaluation of heat-pipe solar collectors for heating a single-span greenhouse. 2018 ASABE Annual International Meeting, 1.

Ma, J. (2019). Direct wind heating greenhouse underground heating system. IOP Conference Series: Earth and Environmental Science, 300(4), 42056.

Nimmermark, S. (2015). Measured energy use in a greenhouse with tomatoes compared to predicted use by a mechanistic model including transpiration. Agricultural Engineering International: CIGR Journal.

Ntinas, G. K., Fragos, V. P., & Nikita-Martzopoulou, C. (2014). Thermal analysis of a hybrid solar energy saving system inside a greenhouse. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2014.02.058

Ntinas, Georgios K, Dannehl, D., Schuch, I., Rocksch, T., & Schmidt, U. (2020). Sustainable greenhouse production with minimised carbon footprint by energy export. Biosystems Engineering, 189, 164–178.

Paksoy, H. Ö., & Beyhan, B. (2015). Thermal energy storage (TES) systems for greenhouse technology. In Advances in thermal energy storage systems (pp. 533–548). Elsevier.

Qiu, Z., Song, M., Wang, J., Zhang, X., Liu, H., Meng, T., & Song, Y. (2014). Experiment effect of application to new assembly type solar double effect greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 30(19), 232–239.

Rasheed, A., Na, W. H., Lee, J. W., Kim, H. T., & Lee, H. W. (2021). Development and validation of air‐to‐water heat pump model for greenhouse heating. Energies, 14(15), 1–22. https://doi.org/10.3390/en14154714

Reyes-Rosas, A., Molina-Aiz, F. D., Valera, D. L., López, A., & Khamkure, S. (2017). Development of a single energy balance model for prediction of temperatures inside a naturally ventilated greenhouse with polypropylene soil mulch. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2017.08.020

Rocha, G. A. O., Medina, A. N. C., Arias, L. G., Caita, J. F. A., & Villagran, E. (2022). Análisis sobre la actividad científica referente a las estrategias de climatización pasiva usada en invernaderos: Parte 1: Análisis bibliométrico. Ciencia Latina Revista Científica Multidisciplinar, 6(5), 4596–4623.

Rocha, G. A. O., Pichimata, M. A., & Villagran, E. (2021). Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries. Sustainability 2021, Vol. 13, Page 10433, 13(18), 10433. https://doi.org/10.3390/SU131810433

Rojas-Rishor, A., Flores-Velazquez, J., Villagran, E., & Aguilar-Rodríguez, C. E. (2022). Valuation of Climate Performance of a Low-Tech Greenhouse in Costa Rica. Processes, 10(4), 693.

Salinas-Velandia, D. A., Romero-Perdomo, F., Numa-Vergel, S., Villagrán, E., Donado-Godoy, P., & Galindo-Pacheco, J. R. (2022). Insights into Circular Horticulture: Knowledge Diffusion, Resource Circulation, One Health Approach, and Greenhouse Technologies. In International Journal of Environmental Research and Public Health (Vol. 19, Issue 19). https://doi.org/10.3390/ijerph191912053

Sellami, D., Boughanmi, H., Bouadila, S., Ghorbel, A., & Salem-Fnayou, A. Ben. (2019). Comparative study of the performance of two greenhouse heating techniques: Solar air heater and heat pump. Heat Transfer Research, 50(12).

Sepúlveda, S. (2014). Radiación solar: Factor clave para el diseño de sistemas fotovoltaicos. Mundo FESC, 4(8), 60–65.

Sethi, V. P., & Sharma, S. K. (2008). Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications. Solar Energy, 82(9), 832–859. https://doi.org/10.1016/j.solener.2008.02.010

Taki, M., Ajabshirchi, Y., Ranjbar, S. F., Rohani, A., & Matloobi, M. (2016). Modeling and experimental validation of heat transfer and energy consumption in an innovative greenhouse structure. Information Processing in Agriculture. https://doi.org/10.1016/j.inpa.2016.06.002

Tanny, J., Lukyanov, V., Neiman, M., Cohen, S., Teitel, M., & Seginer, I. (2018). Energy balance and partitioning and vertical profiles of turbulence characteristics during initial growth of a banana plantation in a screenhouse. Agricultural and Forest Meteorology. https://doi.org/10.1016/j.agrformet.2018.02.028

Vadiee, A., Yaghoubi, M., Martin, V., & Bazargan-Lari, Y. (2016). Energy analysis of solar blind system concept using energy system modelling. Solar Energy, 139, 297–308.

Villagrán-Munar, E. A., & Bojacá-Aldana, C. R. (2019a). CFD simulation of the increase of the roof ventilation area in a traditional Colombian greenhouse: Effect on air flow patterns and thermal behavior. International Journal of Heat and Technology, 37(3), 881–892. https://doi.org/10.18280/ijht.370326

Villagrán-Munar, E. A., & Bojacá-Aldana, C. R. (2019b). Numerical evaluation of passive strategies for nocturnal climate optimization in a greenhouse designed for rose production (Rosa spp.). Ornamental Horticulture, 25(4), 351–364. https://doi.org/10.1590/2447-536X.v25i4.2087

Villagrán-Munar, E. A., & Bojacá-Aldana, C. R. (2020). Study using a CFD approach of the efficiency of a roof ventilation closure system in a multi-tunnel greenhouse for nighttime microclimate optimization. Revista Ceres, 67(5), 345–356. https://doi.org/10.1590/0034-737x202067050002

Villagran, E. A., Matarrita, R. R., & Noreña, J. E. J. (2020). Comportamiento microclimático diurno, en temporada seca, de tres estructuras para agricultura protegida en el trópico seco. UNED Research Journal, 12(2), e2854–e2854.

Villagran, E., Bojacá, C., & Akrami, M. (2021). Contribution to the Sustainability of Agricultural Production in Greenhouses Built on Slope Soils: A Numerical Study of the Microclimatic Behavior of a Typical Colombian Structure. Sustainability, 13(9), 4748.

Villagrán, E., Flores-Velazquez, J., Akrami, M., & Bojacá, C. (2021). Influence of the Height in a Colombian Multi-Tunnel Greenhouse on Natural Ventilation and Thermal Behavior: Modeling Approach. Sustainability, 13(24), 13631.

Villagran, E., Ramirez, R., Rodriguez, A., Pacheco, R. L., & Jaramillo, J. (2020). Simulation of the thermal and aerodynamic behavior of an established screenhouse under warm tropical climate conditions: A numerical approach. International Journal of Sustainable Development and Planning. https://doi.org/10.18280/ijsdp.150409

Villagrán, M. E. A., & Bojacá, A. C. R. (2019). Numerical evaluation of passive strategies for nocturnal climate optimization in a greenhouse designed for rose production (Rosa spp.). Ornamental Horticulture, 25(4), 351–364. https://doi.org/10.1590/2447-536X.V25I4.2087

Villagran Munar, E. A., Bojacá Aldana, C. R., & Rojas Bahamon, N. A. (2018). DETERMINATION OF THE THERMAL BEHAVIOR OF A COLOMBIAN SPATIAL GREENHOUSE THROUGH COMPUTATIONAL FLUID DYNAMICS. Revista UDCA Actualidad & Divulgación Científica, 21(2), 415–426.

Waller, R., Kacira, M., Magadley, E., Teitel, M., & Yehia, I. (2022). Evaluating the Performance of Flexible, Semi-Transparent Large-Area Organic Photovoltaic Arrays Deployed on a Greenhouse. AgriEngineering, 4(4), 969–992.

Zhang, D., Zhu, D., Wang, J., Wei, H., Zong, X., Tan, Y., & Liu, Q. (2014). Design and experiment of semi-automatic double-heat source forcing cultivation of temperature control for sweet cherry. Transactions of the Chinese Society of Agricultural Engineering, 30(17), 228–234.

Zhang, J., Wang, J., Guo, S., Wei, B., He, X., Sun, J., & Shu, S. (2017). Study on heat transfer characteristics of straw block wall in solar greenhouse. Energy and Buildings, 139, 91–100.

Zhang, L., Xu, P., Mao, J., Tang, X., Li, Z., & Shi, J. (2015). A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study. Applied Energy, 156, 213–222.

Zhang, X., Lv, J., Dawuda, M. M., Xie, J., Yu, J., Gan, Y., Zhang, J., Tang, Z., & Li, J. (2019). Innovative passive heat-storage walls improve thermal performance and energy efficiency in Chinese solar greenhouses for non-arable lands. Solar Energy, 190, 561–575. https://doi.org/10.1016/j.solener.2019.08.056

Zhang, Xin, Wang, H., Zou, Z., & Wang, S. (2016). CFD and weighted entropy based simulation and optimisation of Chinese Solar Greenhouse temperature distribution. Biosystems Engineering. https://doi.org/10.1016/j.biosystemseng.2015.11.006

Zhang, Y., Yang, Q., & Fang, H. (2012). Research on warming effect of water curtain system in Chinese solar greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 28(4), 188–193.

Publicado
2022-11-30
Cómo citar
Ortiz Rocha, G. A., Chamorro Medina, A. N., Gómez Arias, L., Acuña Caita, J. F., & Villagran, E. (2022). Análisis sobre la actividad científica referente a las estrategias de climatización pasiva usada en invernaderos: Parte 2: análisis técnico. Ciencia Latina Revista Científica Multidisciplinar, 6(6), 2220-2245. https://doi.org/10.37811/cl_rcm.v6i6.3676
Sección
Artículos