Esclerosis lateral amiotrófica, revisión epidemiológica, clínica y terapéutica de una catastrófica enfermedad neurológica en términos pronósticos
Resumen
La esclerosis lateral amiotrófica (ELA) es un trastorno neurodegenerativo que afecta principalmente al sistema motor, pero en el que se reconocen cada vez más las manifestaciones extramotoras. La pérdida de neuronas motoras superiores e inferiores en la corteza motora, los núcleos del tronco encefálico y el asta anterior de la médula espinal da lugar a una debilidad muscular progresiva y atrofia. ALS a menudo tiene un inicio focal, pero posteriormente se propaga a diferentes regiones del cuerpo, donde la falla de los músculos respiratorios generalmente limita la supervivencia de 2 a 5 años después del inicio de la enfermedad. Hasta en el 50% de los casos existen manifestaciones extramotoras como cambios en el comportamiento, disfunción ejecutiva y problemas del lenguaje. En el 10%-15% de los pacientes, estos problemas son lo suficientemente graves como para cumplir los criterios clínicos de demencia frontotemporal (DFT). En el 10% de los pacientes con ELA, los antecedentes familiares sugieren un patrón de herencia autosómico dominante. El 90% restante no tiene familiares afectados y se clasifican como ELA esporádica. Las causas de la ELA parecen ser heterogéneas y solo se comprenden parcialmente. Hasta la fecha, se han asociado más de 20 genes con la ELA. La causa genética más común es una expansión repetida de hexanucleótidos en el Gen C9orf72 , responsable del 30-50% de la ELA familiar y del 7% de la ELA esporádica. Estas expansiones también son una causa frecuente de demencia frontotemporal, lo que enfatiza la superposición molecular entre ALS y DFT. Hasta el día de hoy, no existe una cura o un tratamiento eficaz para la ELA y la piedra angular del tratamiento sigue siendo la atención multidisciplinaria, que incluye el apoyo nutricional y respiratorio y el control de los síntomas. En esta revisión, se discuten diferentes aspectos de la ELA, incluida la epidemiología, la etiología, la patogenia, las características clínicas, el diagnóstico diferencial, las investigaciones, el tratamiento y las perspectivas futuras.
Descargas
Citas
Abe, K., Aoki, M., Tsuji, S., Itoyama, Y., Sobue, G., Togo, M., . . . Yoshino, H. (2017). Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. The Lancet Neurology, 16(7), 505-512. https://doi.org/10.1016/s1474-4422(17)30115-1
Al-Chalabi, A., Andersen, P. M., Chandran, S., Chio, A., Corcia, P., Couratier, P., . . . van den Berg, L. H. (2017). July 2017 ENCALS statement on edaravone. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 18(7-8), 471-474. https://doi.org/10.1080/21678421.2017.1369125
Al-Chalabi, A., Fang, F., Hanby, M. F., Leigh, P. N., Shaw, C. E., Ye, W. & Rijsdijk, F. (2010). An estimate of amyotrophic lateral sclerosis heritability using twin data. Journal of Neurology, Neurosurgery & Psychiatry, 81(12), 1324-1326. https://doi.org/10.1136/jnnp.2010.207464
Al-Chalabi, A. & Hardiman, O. (2013). The epidemiology of ALS: a conspiracy of genes, environment and time. Nature Reviews Neurology, 9(11), 617-628. https://doi.org/10.1038/nrneurol.2013.203
Al-Chalabi, A., Hardiman, O., Kiernan, M. C., Chiò, A., Rix-Brooks, B. & van den Berg, L. H. (2016). Amyotrophic lateral sclerosis: moving towards a new classification system. The Lancet Neurology, 15(11), 1182-1194. https://doi.org/10.1016/s1474-4422(16)30199-5
Andersen, P. M., Abrahams, S., Borasio, G. D., de Carvalho, M., Chio, A., Van Damme, P., . . . Weber, M. (2011). EFNS guidelines on the Clinical Management of Amyotrophic Lateral Sclerosis (MALS) – revised report of an EFNS task force. European Journal of Neurology, 19(3), 360-375. https://doi.org/10.1111/j.1468-1331.2011.03501.x
Bensimon, G., Lacomblez, L. & Meininger, V. (1994). A Controlled Trial of Riluzole in Amyotrophic Lateral Sclerosis. New England Journal of Medicine, 330(9), 585-591. https://doi.org/10.1056/nejm199403033300901
Bercier, V., Hubbard, J. M., Fidelin, K., Duroure, K., Auer, T. O., Revenu, C., . . . Del Bene, F. (2019). Dynactin1 depletion leads to neuromuscular synapse instability and functional abnormalities. Molecular Neurodegeneration, 14(1), 27. https://doi.org/10.1186/s13024-019-0327-3
Boeynaems, S., Bogaert, E., Van Damme, P. & Van Den Bosch, L. (2016). Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathologica, 132(2), 159-173. https://doi.org/10.1007/s00401-016-1586-5
Brenner, D., Yilmaz, R., Müller, K., Grehl, T., Petri, S., Meyer, T., . . . Kassubek, J. (2018). Hot-spot KIF5A mutations cause familial ALS. Brain, 141(3), 688-697. https://doi.org/10.1093/brain/awx370
Brooks, B. R., Miller, R. G., Swash, M. & Munsat, T. L. (2000). El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 1(5), 293-299. https://doi.org/10.1080/146608200300079536
Brown, R. H. & Al-Chalabi, A. (2017). Amyotrophic Lateral Sclerosis. Recuperado de https://377(2), 162–172. https://doi.org/10.1056/NEJMra1603471
Buratti, E., De Conti, L., Stuani, C., Romano, M., Baralle, M. & Baralle, F. (2010). Nuclear factor TDP-43 can affect selected microRNA levels. FEBS Journal, 277(10), 2268-2281. https://doi.org/10.1111/j.1742-4658.2010.07643.x
Burrell, J. R., Kiernan, M. C., Vucic, S. & Hodges. (2011). Motor neuron dysfunction in frontotemporal dementia. Brain : a journal of neurology, 134(9), 2582-2594. https://doi.org/10.1093/brain/awr195
Chio, A., Calvo, A., Moglia, C., Mazzini, L. & Mora, G. (2011). Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. Journal of Neurology, Neurosurgery & Psychiatry, 82(7), 740-746. https://doi.org/10.1136/jnnp.2010.235952
Cirulli, E. T., Lasseigne, B. N., Petrovski, S., Sapp, P. C., Dion, P. A., Leblond, C. S., . . . Goldstein, D. B. (2015). Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science, 347(6229), 1436-1441. https://doi.org/10.1126/science.aaa3650
de Carvalho, M., Dengler, R., Eisen, A., England, J. D., Kaji, R., Kimura, J., . . . Swash, M. (2008). Electrodiagnostic criteria for diagnosis of ALS. Clinical Neurophysiology, 119(3), 497-503. https://doi.org/10.1016/j.clinph.2007.09.143
De Schaepdryver, M., Jeromin, A., Gille, B., Claeys, K. G., Herbst, V., Brix, B., . . . Poesen, K. (2017). Comparison of elevated phosphorylated neurofilament heavy chains in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 89(4), 367-373. https://doi.org/10.1136/jnnp-2017-316605
De Vos, K. J. & Hafezparast, M. (2017). Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiology of Disease, 105, 283-299. https://doi.org/10.1016/j.nbd.2017.02.004
Deda, H., Inci, M., Kürekçi, A., Sav, A., Kayıhan, K., Özgün, E., . . . Kocabay, S. (2009). Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy, 11(1), 18-25. https://doi.org/10.1080/14653240802549470
DeJesus-Hernandez, M., Mackenzie, I., Boeve, B., Boxer, A., Baker, M., Rutherford, N., . . . Rademakers, R. (2011). Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron, 72(2), 245-256. https://doi.org/10.1016/j.neuron.2011.09.011
Deng, H. X., Chen, W., Hong, S. T., Boycott, K. M., Gorrie, G. H., Siddique, N., . . . Siddique, T. (2011). Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature, 477(7363), 211-215. https://doi.org/10.1038/nature10353
Diekstra, F. P., van Vught, P. W., van Rheenen, W., Koppers, M., Pasterkamp, R. J., van Es, M. A., . . . Veldink, J. H. (2012). UNC13A is a modifier of survival in amyotrophic lateral sclerosis. Neurobiology of Aging, 33(3), 630.e3-630.e8. https://doi.org/10.1016/j.neurobiolaging.2011.10.029
Elden, A. C., Kim, H. J., Hart, M. P., Chen-Plotkin, A. S., Johnson, B. S., Fang, X., . . . Gitler, A. D. (2010). Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature, 466(7310), 1069-1075. https://doi.org/10.1038/nature09320
Fang, F., Ingre, C., Roos, P., Kamel, F. & Piehl, F. (2015). Risk factors for amyotrophic lateral sclerosis. Clinical Epidemiology, 181. https://doi.org/10.2147/clep.s37505
Fecto, F. (2011). SQSTM1 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis. Archives of Neurology, 68(11), 1440. https://doi.org/10.1001/archneurol.2011.250
Feigin, V. L., Nichols, E., Alam, T., Bannick, M. S., Beghi, E., Blake, N., . . . Vos, T. (2019). Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(5), 459-480. https://doi.org/10.1016/s1474-4422(18)30499-x
Finegan, E., Chipika, R. H., Li Hi Shing, S., Hardiman, O. & Bede, P. (2019). Pathological Crying and Laughing in Motor Neuron Disease: Pathobiology, Screening, Intervention. Frontiers in Neurology, 10. https://doi.org/10.3389/fneur.2019.00260
Freischmidt, A., Wieland, T., Richter, B., Ruf, W., Schaeffer, V., Müller, K., . . . Weishaupt, J. H. (2015). Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nature Neuroscience, 18(5), 631-636. https://doi.org/10.1038/nn.4000
Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E. M., Logroscino, G., Robberecht, W., . . . van den Berg, L. H. (2017). Amyotrophic lateral sclerosis. Nature Reviews Disease Primers, 3(1). https://doi.org/10.1038/nrdp.2017.71
Hardiman, O., van den Berg, L. H. & Kiernan, M. C. (2011). Clinical diagnosis and management of amyotrophic lateral sclerosis. Nature Reviews Neurology, 7(11), 639-649. https://doi.org/10.1038/nrneurol.2011.153
Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., . . . Williams, J. (2009). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nature Genetics, 41(10), 1088-1093. https://doi.org/10.1038/ng.440
Hinchcliffe, M. & Smith, A. (2017). Riluzole: real-world evidence supports significant extension of median survival times in patients with amyotrophic lateral sclerosis. Degenerative Neurological and Neuromuscular Disease, Volume 7, 61-70. https://doi.org/10.2147/dnnd.s135748
Huijbers, M. G., Niks, E. H., Klooster, R., de Visser, M., Kuks, J. B., Veldink, J. H., . . . Verschuuren, J. J. (2016). Myasthenia gravis with muscle specific kinase antibodies mimicking amyotrophic lateral sclerosis. Neuromuscular Disorders, 26(6), 350-353. https://doi.org/10.1016/j.nmd.2016.04.004
Jenkins, T. M., Alix, J. J. P., Fingret, J., Esmail, T., Hoggard, N., Baster, K., . . . Shaw, P. J. (2019). Correction to: Longitudinal multi-modal muscle-based biomarker assessment in motor neuron disease. Journal of Neurology, 267(1), 257-258. https://doi.org/10.1007/s00415-019-09648-8
Jiang, J., Zhu, Q., Gendron, T. F., Saberi, S., McAlonis-Downes, M., Seelman, A., Stauffer, J. E., Jafar-Nejad, P., Drenner, K., Schulte, D., Chun, S., Sun, S., Ling, S. C., Myers, B., Engelhardt, J., Katz, M., Baughn, M., Platoshyn, O., Marsala, M., Watt, A., . . . Lagier-Tourenne, C. (2016). Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs. Neuron, 90(3), 535-550. https://doi.org/10.1016/j.neurona.2016.04.006
Johnson, J. O., Mandrioli, J., Benatar, M., Abramzon, Y., Van Deerlin, V. M., Trojanowski, J. Q., . . . Traynor, B. J. (2010). Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS. Neuron, 68(5), 857-864. https://doi.org/10.1016/j.neuron.2010.11.036
Johnston, C. A., Stanton, B. R., Turner, M. R., Gray, R., Blunt, A. H. M., Butt, D., . . . Al-Chalabi, A. (2006). Amyotrophic lateral sclerosis in an urban setting. Journal of Neurology, 253(12), 1642-1643. https://doi.org/10.1007/s00415-006-0195-y
Kabashi, E., Valdmanis, P. N., Dion, P., Spiegelman, D., McConkey, B. J., Velde, C. V., . . . Rouleau, G. A. (2008). TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genetics, 40(5), 572-574. https://doi.org/10.1038/ng.132
Kiernan, M. C., Vucic, S., Cheah, B. C., Turner, M. R., Eisen, A., Hardiman, O., . . . Zoing, M. C. (2011). Amyotrophic lateral sclerosis. The Lancet, 377(9769), 942-955. https://doi.org/10.1016/s0140-6736(10)61156-7
Kwiatkowski, T. J., Bosco, D. A., LeClerc, A. L., Tamrazian, E., Vanderburg, C. R., Russ, C., . . . Brown, R. H. (2009). Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis. Science, 323(5918), 1205-1208. https://doi.org/10.1126/science.1166066
Kwong, L. K., Neumann, M., Sampathu, D. M., Lee, V. M. Y. & Trojanowski, J. Q. (2007). TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease. Acta Neuropathologica, 114(1), 63-70. https://doi.org/10.1007/s00401-007-0226-5
Lacomblez, L., Bensimon, G., Meininger, V., Leigh, P. & Guillet, P. (1996). Dose-ranging study of riluzole in amyotrophic lateral sclerosis. The Lancet, 347(9013), 1425-1431. https://doi.org/10.1016/s0140-6736(96)91680-3
Le Ber, I., De Septenville, A., Millecamps, S., Camuzat, A., Caroppo, P., Couratier, P., . . . Vercelletto, M. (2015). TBK1 mutation frequencies in French frontotemporal dementia and amyotrophic lateral sclerosis cohorts. Neurobiology of Aging, 36(11), 3116.e5-3116.e8. https://doi.org/10.1016/j.neurobiolaging.2015.08.009
Logroscino, G., Traynor, B. J., Hardiman, O., Chio, A., Mitchell, D., Swingler, R. J., . . . Beghi, E. (2009). Incidence of amyotrophic lateral sclerosis in Europe. Journal of Neurology, Neurosurgery & Psychiatry, 81(4), 385-390. https://doi.org/10.1136/jnnp.2009.183525
Mackenzie, I. R., Rademakers, R. & Neumann, M. (2010). TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. The Lancet Neurology, 9(10), 995-1007. https://doi.org/10.1016/s1474-4422(10)70195-2
Manjaly, Z. R., Scott, K. M., Abhinav, K., Wijesekera, L., Ganesalingam, J., Goldstein, L. H., . . . Al-Chalabi, A. (2010). The sex ratio in amyotrophic lateral sclerosis: A population based study. Amyotrophic Lateral Sclerosis, 11(5), 439-442. https://doi.org/10.3109/17482961003610853
Marin, B., Boumédiene, F., Logroscino, G., Couratier, P., Babron, M. C., Leutenegger, A. L., . . . Beghi, E. (2016). Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. International Journal of Epidemiology, dyw061. https://doi.org/10.1093/ije/dyw061
Maruyama, H., Morino, H., Ito, H., Izumi, Y., Kato, H., Watanabe, Y., . . . Kawakami, H. (2010). Mutations of optineurin in amyotrophic lateral sclerosis. Nature, 465(7295), 223-226. https://doi.org/10.1038/nature08971
Mazzini, L., Mareschi, K., Ferrero, I., Vassallo, E., Oliveri, G., Nasuelli, N., . . . Fagioli, F. (2008). Stem cell treatment in Amyotrophic Lateral Sclerosis. Journal of the Neurological Sciences, 265(1-2), 78-83. https://doi.org/10.1016/j.jns.2007.05.016
Mills, K. R. (2010). Detecting fasciculations in amyotrophic lateral sclerosis: duration of observation required. Journal of Neurology, Neurosurgery & Psychiatry, 82(5), 549-551. https://doi.org/10.1136/jnnp.2009.186833
Mitsumoto, H., Brooks, B. R. & Silani, V. (2014). Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? The Lancet Neurology, 13(11), 1127-1138. https://doi.org/10.1016/s1474-4422(14)70129-2
Mora, J. S., Genge, A., Chio, A., Estol, C. J., Chaverri, D., Hernández, M., . . . Hermine, O. (2019). Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 21(1-2), 5-14. https://doi.org/10.1080/21678421.2019.1632346
Moviglia, G. A., Moviglia-Brandolino, M. T., Varela, G. S., Albanese, G., Piccone, S., Echegaray, G., . . . Gaeta, C. A. (2012). Feasibility, Safety, and Preliminary Proof of Principles of Autologous Neural Stem Cell Treatment Combined with T-Cell Vaccination for ALS Patients. Cell Transplantation, 21(1_suppl), 57-63. https://doi.org/10.3727/096368912x633770
Munch, C., Sedlmeier, R., Meyer, T., Homberg, V., Sperfeld, A. D., Kurt, A., . . . Ludolph, A. C. (2004). Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology, 63(4), 724-726. https://doi.org/10.1212/01.wnl.0000134608.83927.b1
National Clinical Guideline Centre (UK). (2016). Motor Neurone Disease: Assessment and Management [London: National Institute for Health and Care Excellence] (NICE Guideline, Vol. 42). Recuperado de https://www.ncbi.nlm.nih.gov/books/NBK349620/
Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., . . . Benson, D. F. (1998). Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology, 51(6), 1546-1554. https://doi.org/10.1212/wnl.51.6.1546
Nicolas, A., Kenna, K. P., Renton, A. E., Ticozzi, N., Faghri, F., Chia, R., . . . Twine, N. A. (2018). Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 97(6), 1268-1283.e6. https://doi.org/10.1016/j.neuron.2018.02.027
Niven, E., Newton, J., Foley, J., Colville, S., Swingler, R., Chandran, S., . . . Abrahams, S. (2015). Validation of the Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis Screen (ECAS): A cognitive tool for motor disorders. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16(3-4), 172-179. https://doi.org/10.3109/21678421.2015.1030430
Pagani, M., Chio, A., Valentini, M. C., Oberg, J., Nobili, F., Calvo, A., . . . Cistaro, A. (2014). Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology, 83(12), 1067-1074. https://doi.org/10.1212/wnl.0000000000000792
Parvizi, J. (2001). Pathological laughter and crying: A link to the cerebellum. Brain, 124(9), 1708-1719. https://doi.org/10.1093/brain/124.9.1708
Phukan, J., Pender, N. P. & Hardiman, O. (2007). Cognitive impairment in amyotrophic lateral sclerosis. The Lancet Neurology, 6(11), 994-1003. https://doi.org/10.1016/s1474-4422(07)70265-x
Poesen, K., De Schaepdryver, M., Stubendorff, B., Gille, B., Muckova, P., Wendler, S., . . . Van Damme, P. (2017). Neurofilament markers for ALS correlate with extent of upper and lower motor neuron disease. Neurology, 88(24), 2302-2309. https://doi.org/10.1212/wnl.0000000000004029
Pringle, C. E., Hudson, A. J., Munoz, D. G., Kiernan, J. A., Brown, W. F. & Ebers, G. C. (1992). Primary lateral sclerosis. Clinical features, neuropathology and diagnostic criteria. Brain : a journal of neurology, 115(2), 495-520. https://doi.org/10.1093/brain/115.2.495
Pupillo, E., Poloni, M., Bianchi, E., Giussani, G., Logroscino, G., Zoccolella, S., . . . Beghi, E. (2017). Trauma and amyotrophic lateral sclerosis: a european population-based case-control study from the EURALS consortium. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 19(1-2), 118-125. https://doi.org/10.1080/21678421.2017.1386687
Ravits, J. M. & La Spada, A. R. (2009). ALS motor phenotype heterogeneity, focality, and spread: Deconstructing motor neuron degeneration. Neurology, 73(10), 805-811. https://doi.org/10.1212/wnl.0b013e3181b6bbbd
Renton, A., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J., . . . Traynor, B. (2011). A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron, 72(2), 257-268. https://doi.org/10.1016/j.neuron.2011.09.010
Roggenbuck, J., Quick, A. & Kolb, S. J. (2017). Genetic testing and genetic counseling for amyotrophic lateral sclerosis: an update for clinicians. Genetics in Medicine, 19(3), 267-274. https://doi.org/10.1038/gim.2016.107
Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., . . . Brown, R. H. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362(6415), 59-62. https://doi.org/10.1038/362059a0
Ryan, M., Heverin, M., McLaughlin, R. L. & Hardiman, O. (2019). Lifetime Risk and Heritability of Amyotrophic Lateral Sclerosis. JAMA Neurology, 76(11), 1367. https://doi.org/10.1001/jamaneurol.2019.2044
Schrooten, M., Smetcoren, C., Robberecht, W. & Van Damme, P. (2011). Benefit of the Awaji diagnostic algorithm for amyotrophic lateral sclerosis: A prospective study. Annals of Neurology, 70(1), 79-83. https://doi.org/10.1002/ana.22380
Shefner, J. M., Al-Chalabi, A., Baker, M. R., Cui, L. Y., de Carvalho, M., Eisen, A., . . . Kiernan, M. C. (2020). A proposal for new diagnostic criteria for ALS. Clinical Neurophysiology, 131(8), 1975-1978. https://doi.org/10.1016/j.clinph.2020.04.005
Simon, N. G., Lomen-Hoerth, C. & Kiernan, M. C. (2014). Patterns of clinical and electrodiagnostic abnormalities in early amyotrophic lateral sclerosis. Muscle & Nerve, 50(6), 894-899. https://doi.org/10.1002/mus.24244
Smith, R. A. (2006). Antisense oligonucleotide therapy for neurodegenerative disease. Journal of Clinical Investigation, 116(8), 2290-2296. https://doi.org/10.1172/jci25424
Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B., . . . Shaw, C. E. (2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science (New York, N.Y.), 319((5870)), 1668-1672. https://doi.org/10.1126/science.1154584
Steinacker, P., Feneberg, E., Weishaupt, J., Brettschneider, J., Tumani, H., Andersen, P. M., . . . Otto, M. (2015). Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. Journal of Neurology, Neurosurgery & Psychiatry, jnnp-2015. https://doi.org/10.1136/jnnp-2015-311387
Strong, M. J., Abrahams, S., Goldstein, L. H., Woolley, S., Mclaughlin, P., Snowden, J., . . . Turner, M. R. (2017). Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 18(3-4), 153-174. https://doi.org/10.1080/21678421.2016.1267768
Taylor, J. P., Brown, R. H. & Cleveland, D. W. (2016). Decoding ALS: from genes to mechanism. Nature, 539(7628), 197-206. https://doi.org/10.1038/nature20413
Vajda, A., McLaughlin, R. L., Heverin, M., Thorpe, O., Abrahams, S., Al-Chalabi, A. & Hardiman, O. (2017). Genetic testing in ALS. Neurology, 88(10), 991-999. https://doi.org/10.1212/wnl.0000000000003686
van Blitterswijk, M., van Es, M. A., Hennekam, E. A., Dooijes, D., van Rheenen, W., Medic, J., . . . van den Berg, L. H. (2012). Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Human Molecular Genetics, 21(17), 3776-3784. https://doi.org/10.1093/hmg/dds199
Van Damme, P., Veldink, J. H., van Blitterswijk, M., Corveleyn, A., van Vught, P. W. J., Thijs, V., . . . Robberecht, W. (2011). Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology, 76(24), 2066-2072. https://doi.org/10.1212/wnl.0b013e31821f445b
van Es, M. A., Hardiman, O., Chio, A., Al-Chalabi, A., Pasterkamp, R. J., Veldink, J. H. & van den Berg, L. H. (2017). Amyotrophic lateral sclerosis. The Lancet, 390(10107), 2084-2098. https://doi.org/10.1016/s0140-6736(17)31287-4
van Es, M. A., Veldink, J. H., Saris, C. G. J., Blauw, H. M., van Vught, P. W. J., Birve, A., . . . van den Berg, L. H. (2009). Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nature Genetics, 41(10), 1083-1087. https://doi.org/10.1038/ng.442
Van Laere, K., Vanhee, A., Verschueren, J., De Coster, L., Driesen, A., Dupont, P., . . . Van Damme, P. (2014). Value of18Fluorodeoxyglucose–Positron-Emission Tomography in Amyotrophic Lateral Sclerosis. JAMA Neurology, 71(5), 553. https://doi.org/10.1001/jamaneurol.2014.62
Vance, C., Rogelj, B., Hortobágyi, T., De Vos, K. J., Nishimura, A. L., Sreedharan, J., . . . Shaw, C. E. (2009). Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6. Science, 323(5918), 1208-1211. https://doi.org/10.1126/science.1165942
Webster, C. P., Smith, E. F., Bauer, C. S., Moller, A., Hautbergue, G. M., Ferraiuolo, L., . . . De Vos, K. J. (2016). The C9orf72 protein interacts with Rab1a and the ULK 1 complex to regulate initiation of autophagy. The EMBO Journal, 35(15), 1656-1676. https://doi.org/10.15252/embj.201694401
Westeneng, H. J., Debray, T. P. A., Visser, A. E., van Eijk, R. P. A., Rooney, J. P. K., Calvo, A., . . . van den Berg, L. H. (2018). Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. The Lancet Neurology, 17(5), 423-433. https://doi.org/10.1016/s1474-4422(18)30089-9
Wijesekera, L. C., Mathers, S., Talman, P., Galtrey, C., Parkinson, M. H., Ganesalingam, J., . . . Leigh, P. N. (2009). Natural history and clinical features of the flail arm and flail leg ALS variants. Neurology, 72(12), 1087-1094. https://doi.org/10.1212/01.wnl.0000345041.83406.a2
Derechos de autor 2022 Juan Sebastián Theran león ;Luis Andrés Dulcey Sarmiento ;Estephania Saenz Sandoval;Eliana Rocio Arango Fontecha;Didier Karina Vera Quintero
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.