Esclerosis lateral amiotrófica, revisión epidemiológica, clínica y terapéutica de una catastrófica enfermedad neurológica en términos pronósticos

Palabras clave: esclerosis lateral amiotrófica, ELA esporádica y familiar, patología TDP‐43

Resumen

 La esclerosis lateral amiotrófica (ELA) es un trastorno neurodegenerativo que afecta principalmente al sistema motor, pero en el que se reconocen cada vez más las manifestaciones extramotoras. La pérdida de neuronas motoras superiores e inferiores en la corteza motora, los núcleos del tronco encefálico y el asta anterior de la médula espinal da lugar a una debilidad muscular progresiva y atrofia. ALS a menudo tiene un inicio focal, pero posteriormente se propaga a diferentes regiones del cuerpo, donde la falla de los músculos respiratorios generalmente limita la supervivencia de 2 a 5 años después del inicio de la enfermedad. Hasta en el 50% de los casos existen manifestaciones extramotoras como cambios en el comportamiento, disfunción ejecutiva y problemas del lenguaje. En el 10%-15% de los pacientes, estos problemas son lo suficientemente graves como para cumplir los criterios clínicos de demencia frontotemporal (DFT). En el 10% de los pacientes con ELA, los antecedentes familiares sugieren un patrón de herencia autosómico dominante. El 90% restante no tiene familiares afectados y se clasifican como ELA esporádica. Las causas de la ELA parecen ser heterogéneas y solo se comprenden parcialmente. Hasta la fecha, se han asociado más de 20 genes con la ELA. La causa genética más común es una expansión repetida de hexanucleótidos en el Gen C9orf72 , responsable del 30-50% de la ELA familiar y del 7% de la ELA esporádica. Estas expansiones también son una causa frecuente de demencia frontotemporal, lo que enfatiza la superposición molecular entre ALS y DFT. Hasta el día de hoy, no existe una cura o un tratamiento eficaz para la ELA y la piedra angular del tratamiento sigue siendo la atención multidisciplinaria, que incluye el apoyo nutricional y respiratorio y el control de los síntomas. En esta revisión, se discuten diferentes aspectos de la ELA, incluida la epidemiología, la etiología, la patogenia, las características clínicas, el diagnóstico diferencial, las investigaciones, el tratamiento y las perspectivas futuras.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abe, K., Aoki, M., Tsuji, S., Itoyama, Y., Sobue, G., Togo, M., . . . Yoshino, H. (2017). Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. The Lancet Neurology, 16(7), 505-512. https://doi.org/10.1016/s1474-4422(17)30115-1

Al-Chalabi, A., Andersen, P. M., Chandran, S., Chio, A., Corcia, P., Couratier, P., . . . van den Berg, L. H. (2017). July 2017 ENCALS statement on edaravone. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 18(7-8), 471-474. https://doi.org/10.1080/21678421.2017.1369125

Al-Chalabi, A., Fang, F., Hanby, M. F., Leigh, P. N., Shaw, C. E., Ye, W. & Rijsdijk, F. (2010). An estimate of amyotrophic lateral sclerosis heritability using twin data. Journal of Neurology, Neurosurgery & Psychiatry, 81(12), 1324-1326. https://doi.org/10.1136/jnnp.2010.207464

Al-Chalabi, A. & Hardiman, O. (2013). The epidemiology of ALS: a conspiracy of genes, environment and time. Nature Reviews Neurology, 9(11), 617-628. https://doi.org/10.1038/nrneurol.2013.203

Al-Chalabi, A., Hardiman, O., Kiernan, M. C., Chiò, A., Rix-Brooks, B. & van den Berg, L. H. (2016). Amyotrophic lateral sclerosis: moving towards a new classification system. The Lancet Neurology, 15(11), 1182-1194. https://doi.org/10.1016/s1474-4422(16)30199-5

Andersen, P. M., Abrahams, S., Borasio, G. D., de Carvalho, M., Chio, A., Van Damme, P., . . . Weber, M. (2011). EFNS guidelines on the Clinical Management of Amyotrophic Lateral Sclerosis (MALS) – revised report of an EFNS task force. European Journal of Neurology, 19(3), 360-375. https://doi.org/10.1111/j.1468-1331.2011.03501.x

Bensimon, G., Lacomblez, L. & Meininger, V. (1994). A Controlled Trial of Riluzole in Amyotrophic Lateral Sclerosis. New England Journal of Medicine, 330(9), 585-591. https://doi.org/10.1056/nejm199403033300901

Bercier, V., Hubbard, J. M., Fidelin, K., Duroure, K., Auer, T. O., Revenu, C., . . . Del Bene, F. (2019). Dynactin1 depletion leads to neuromuscular synapse instability and functional abnormalities. Molecular Neurodegeneration, 14(1), 27. https://doi.org/10.1186/s13024-019-0327-3

Boeynaems, S., Bogaert, E., Van Damme, P. & Van Den Bosch, L. (2016). Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathologica, 132(2), 159-173. https://doi.org/10.1007/s00401-016-1586-5

Brenner, D., Yilmaz, R., Müller, K., Grehl, T., Petri, S., Meyer, T., . . . Kassubek, J. (2018). Hot-spot KIF5A mutations cause familial ALS. Brain, 141(3), 688-697. https://doi.org/10.1093/brain/awx370

Brooks, B. R., Miller, R. G., Swash, M. & Munsat, T. L. (2000). El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 1(5), 293-299. https://doi.org/10.1080/146608200300079536

Brown, R. H. & Al-Chalabi, A. (2017). Amyotrophic Lateral Sclerosis. Recuperado de https://377(2), 162–172. https://doi.org/10.1056/NEJMra1603471

Buratti, E., De Conti, L., Stuani, C., Romano, M., Baralle, M. & Baralle, F. (2010). Nuclear factor TDP-43 can affect selected microRNA levels. FEBS Journal, 277(10), 2268-2281. https://doi.org/10.1111/j.1742-4658.2010.07643.x

Burrell, J. R., Kiernan, M. C., Vucic, S. & Hodges. (2011). Motor neuron dysfunction in frontotemporal dementia. Brain : a journal of neurology, 134(9), 2582-2594. https://doi.org/10.1093/brain/awr195

Chio, A., Calvo, A., Moglia, C., Mazzini, L. & Mora, G. (2011). Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. Journal of Neurology, Neurosurgery & Psychiatry, 82(7), 740-746. https://doi.org/10.1136/jnnp.2010.235952

Cirulli, E. T., Lasseigne, B. N., Petrovski, S., Sapp, P. C., Dion, P. A., Leblond, C. S., . . . Goldstein, D. B. (2015). Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science, 347(6229), 1436-1441. https://doi.org/10.1126/science.aaa3650

de Carvalho, M., Dengler, R., Eisen, A., England, J. D., Kaji, R., Kimura, J., . . . Swash, M. (2008). Electrodiagnostic criteria for diagnosis of ALS. Clinical Neurophysiology, 119(3), 497-503. https://doi.org/10.1016/j.clinph.2007.09.143

De Schaepdryver, M., Jeromin, A., Gille, B., Claeys, K. G., Herbst, V., Brix, B., . . . Poesen, K. (2017). Comparison of elevated phosphorylated neurofilament heavy chains in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 89(4), 367-373. https://doi.org/10.1136/jnnp-2017-316605

De Vos, K. J. & Hafezparast, M. (2017). Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiology of Disease, 105, 283-299. https://doi.org/10.1016/j.nbd.2017.02.004

Deda, H., Inci, M., Kürekçi, A., Sav, A., Kayıhan, K., Özgün, E., . . . Kocabay, S. (2009). Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy, 11(1), 18-25. https://doi.org/10.1080/14653240802549470

DeJesus-Hernandez, M., Mackenzie, I., Boeve, B., Boxer, A., Baker, M., Rutherford, N., . . . Rademakers, R. (2011). Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron, 72(2), 245-256. https://doi.org/10.1016/j.neuron.2011.09.011

Deng, H. X., Chen, W., Hong, S. T., Boycott, K. M., Gorrie, G. H., Siddique, N., . . . Siddique, T. (2011). Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature, 477(7363), 211-215. https://doi.org/10.1038/nature10353

Diekstra, F. P., van Vught, P. W., van Rheenen, W., Koppers, M., Pasterkamp, R. J., van Es, M. A., . . . Veldink, J. H. (2012). UNC13A is a modifier of survival in amyotrophic lateral sclerosis. Neurobiology of Aging, 33(3), 630.e3-630.e8. https://doi.org/10.1016/j.neurobiolaging.2011.10.029

Elden, A. C., Kim, H. J., Hart, M. P., Chen-Plotkin, A. S., Johnson, B. S., Fang, X., . . . Gitler, A. D. (2010). Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature, 466(7310), 1069-1075. https://doi.org/10.1038/nature09320

Fang, F., Ingre, C., Roos, P., Kamel, F. & Piehl, F. (2015). Risk factors for amyotrophic lateral sclerosis. Clinical Epidemiology, 181. https://doi.org/10.2147/clep.s37505

Fecto, F. (2011). SQSTM1 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis. Archives of Neurology, 68(11), 1440. https://doi.org/10.1001/archneurol.2011.250

Feigin, V. L., Nichols, E., Alam, T., Bannick, M. S., Beghi, E., Blake, N., . . . Vos, T. (2019). Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(5), 459-480. https://doi.org/10.1016/s1474-4422(18)30499-x

Finegan, E., Chipika, R. H., Li Hi Shing, S., Hardiman, O. & Bede, P. (2019). Pathological Crying and Laughing in Motor Neuron Disease: Pathobiology, Screening, Intervention. Frontiers in Neurology, 10. https://doi.org/10.3389/fneur.2019.00260

Freischmidt, A., Wieland, T., Richter, B., Ruf, W., Schaeffer, V., Müller, K., . . . Weishaupt, J. H. (2015). Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nature Neuroscience, 18(5), 631-636. https://doi.org/10.1038/nn.4000

Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E. M., Logroscino, G., Robberecht, W., . . . van den Berg, L. H. (2017). Amyotrophic lateral sclerosis. Nature Reviews Disease Primers, 3(1). https://doi.org/10.1038/nrdp.2017.71

Hardiman, O., van den Berg, L. H. & Kiernan, M. C. (2011). Clinical diagnosis and management of amyotrophic lateral sclerosis. Nature Reviews Neurology, 7(11), 639-649. https://doi.org/10.1038/nrneurol.2011.153

Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., . . . Williams, J. (2009). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nature Genetics, 41(10), 1088-1093. https://doi.org/10.1038/ng.440

Hinchcliffe, M. & Smith, A. (2017). Riluzole: real-world evidence supports significant extension of median survival times in patients with amyotrophic lateral sclerosis. Degenerative Neurological and Neuromuscular Disease, Volume 7, 61-70. https://doi.org/10.2147/dnnd.s135748

Huijbers, M. G., Niks, E. H., Klooster, R., de Visser, M., Kuks, J. B., Veldink, J. H., . . . Verschuuren, J. J. (2016). Myasthenia gravis with muscle specific kinase antibodies mimicking amyotrophic lateral sclerosis. Neuromuscular Disorders, 26(6), 350-353. https://doi.org/10.1016/j.nmd.2016.04.004

Jenkins, T. M., Alix, J. J. P., Fingret, J., Esmail, T., Hoggard, N., Baster, K., . . . Shaw, P. J. (2019). Correction to: Longitudinal multi-modal muscle-based biomarker assessment in motor neuron disease. Journal of Neurology, 267(1), 257-258. https://doi.org/10.1007/s00415-019-09648-8

Jiang, J., Zhu, Q., Gendron, T. F., Saberi, S., McAlonis-Downes, M., Seelman, A., Stauffer, J. E., Jafar-Nejad, P., Drenner, K., Schulte, D., Chun, S., Sun, S., Ling, S. C., Myers, B., Engelhardt, J., Katz, M., Baughn, M., Platoshyn, O., Marsala, M., Watt, A., . . . Lagier-Tourenne, C. (2016). Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs. Neuron, 90(3), 535-550. https://doi.org/10.1016/j.neurona.2016.04.006

Johnson, J. O., Mandrioli, J., Benatar, M., Abramzon, Y., Van Deerlin, V. M., Trojanowski, J. Q., . . . Traynor, B. J. (2010). Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS. Neuron, 68(5), 857-864. https://doi.org/10.1016/j.neuron.2010.11.036

Johnston, C. A., Stanton, B. R., Turner, M. R., Gray, R., Blunt, A. H. M., Butt, D., . . . Al-Chalabi, A. (2006). Amyotrophic lateral sclerosis in an urban setting. Journal of Neurology, 253(12), 1642-1643. https://doi.org/10.1007/s00415-006-0195-y

Kabashi, E., Valdmanis, P. N., Dion, P., Spiegelman, D., McConkey, B. J., Velde, C. V., . . . Rouleau, G. A. (2008). TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genetics, 40(5), 572-574. https://doi.org/10.1038/ng.132

Kiernan, M. C., Vucic, S., Cheah, B. C., Turner, M. R., Eisen, A., Hardiman, O., . . . Zoing, M. C. (2011). Amyotrophic lateral sclerosis. The Lancet, 377(9769), 942-955. https://doi.org/10.1016/s0140-6736(10)61156-7

Kwiatkowski, T. J., Bosco, D. A., LeClerc, A. L., Tamrazian, E., Vanderburg, C. R., Russ, C., . . . Brown, R. H. (2009). Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis. Science, 323(5918), 1205-1208. https://doi.org/10.1126/science.1166066

Kwong, L. K., Neumann, M., Sampathu, D. M., Lee, V. M. Y. & Trojanowski, J. Q. (2007). TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease. Acta Neuropathologica, 114(1), 63-70. https://doi.org/10.1007/s00401-007-0226-5

Lacomblez, L., Bensimon, G., Meininger, V., Leigh, P. & Guillet, P. (1996). Dose-ranging study of riluzole in amyotrophic lateral sclerosis. The Lancet, 347(9013), 1425-1431. https://doi.org/10.1016/s0140-6736(96)91680-3

Le Ber, I., De Septenville, A., Millecamps, S., Camuzat, A., Caroppo, P., Couratier, P., . . . Vercelletto, M. (2015). TBK1 mutation frequencies in French frontotemporal dementia and amyotrophic lateral sclerosis cohorts. Neurobiology of Aging, 36(11), 3116.e5-3116.e8. https://doi.org/10.1016/j.neurobiolaging.2015.08.009

Logroscino, G., Traynor, B. J., Hardiman, O., Chio, A., Mitchell, D., Swingler, R. J., . . . Beghi, E. (2009). Incidence of amyotrophic lateral sclerosis in Europe. Journal of Neurology, Neurosurgery & Psychiatry, 81(4), 385-390. https://doi.org/10.1136/jnnp.2009.183525

Mackenzie, I. R., Rademakers, R. & Neumann, M. (2010). TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. The Lancet Neurology, 9(10), 995-1007. https://doi.org/10.1016/s1474-4422(10)70195-2

Manjaly, Z. R., Scott, K. M., Abhinav, K., Wijesekera, L., Ganesalingam, J., Goldstein, L. H., . . . Al-Chalabi, A. (2010). The sex ratio in amyotrophic lateral sclerosis: A population based study. Amyotrophic Lateral Sclerosis, 11(5), 439-442. https://doi.org/10.3109/17482961003610853

Marin, B., Boumédiene, F., Logroscino, G., Couratier, P., Babron, M. C., Leutenegger, A. L., . . . Beghi, E. (2016). Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. International Journal of Epidemiology, dyw061. https://doi.org/10.1093/ije/dyw061

Maruyama, H., Morino, H., Ito, H., Izumi, Y., Kato, H., Watanabe, Y., . . . Kawakami, H. (2010). Mutations of optineurin in amyotrophic lateral sclerosis. Nature, 465(7295), 223-226. https://doi.org/10.1038/nature08971

Mazzini, L., Mareschi, K., Ferrero, I., Vassallo, E., Oliveri, G., Nasuelli, N., . . . Fagioli, F. (2008). Stem cell treatment in Amyotrophic Lateral Sclerosis. Journal of the Neurological Sciences, 265(1-2), 78-83. https://doi.org/10.1016/j.jns.2007.05.016

Mills, K. R. (2010). Detecting fasciculations in amyotrophic lateral sclerosis: duration of observation required. Journal of Neurology, Neurosurgery & Psychiatry, 82(5), 549-551. https://doi.org/10.1136/jnnp.2009.186833

Mitsumoto, H., Brooks, B. R. & Silani, V. (2014). Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? The Lancet Neurology, 13(11), 1127-1138. https://doi.org/10.1016/s1474-4422(14)70129-2

Mora, J. S., Genge, A., Chio, A., Estol, C. J., Chaverri, D., Hernández, M., . . . Hermine, O. (2019). Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 21(1-2), 5-14. https://doi.org/10.1080/21678421.2019.1632346

Moviglia, G. A., Moviglia-Brandolino, M. T., Varela, G. S., Albanese, G., Piccone, S., Echegaray, G., . . . Gaeta, C. A. (2012). Feasibility, Safety, and Preliminary Proof of Principles of Autologous Neural Stem Cell Treatment Combined with T-Cell Vaccination for ALS Patients. Cell Transplantation, 21(1_suppl), 57-63. https://doi.org/10.3727/096368912x633770

Munch, C., Sedlmeier, R., Meyer, T., Homberg, V., Sperfeld, A. D., Kurt, A., . . . Ludolph, A. C. (2004). Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology, 63(4), 724-726. https://doi.org/10.1212/01.wnl.0000134608.83927.b1

National Clinical Guideline Centre (UK). (2016). Motor Neurone Disease: Assessment and Management [London: National Institute for Health and Care Excellence] (NICE Guideline, Vol. 42). Recuperado de https://www.ncbi.nlm.nih.gov/books/NBK349620/

Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., . . . Benson, D. F. (1998). Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology, 51(6), 1546-1554. https://doi.org/10.1212/wnl.51.6.1546

Nicolas, A., Kenna, K. P., Renton, A. E., Ticozzi, N., Faghri, F., Chia, R., . . . Twine, N. A. (2018). Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 97(6), 1268-1283.e6. https://doi.org/10.1016/j.neuron.2018.02.027

Niven, E., Newton, J., Foley, J., Colville, S., Swingler, R., Chandran, S., . . . Abrahams, S. (2015). Validation of the Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis Screen (ECAS): A cognitive tool for motor disorders. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16(3-4), 172-179. https://doi.org/10.3109/21678421.2015.1030430

Pagani, M., Chio, A., Valentini, M. C., Oberg, J., Nobili, F., Calvo, A., . . . Cistaro, A. (2014). Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology, 83(12), 1067-1074. https://doi.org/10.1212/wnl.0000000000000792

Parvizi, J. (2001). Pathological laughter and crying: A link to the cerebellum. Brain, 124(9), 1708-1719. https://doi.org/10.1093/brain/124.9.1708

Phukan, J., Pender, N. P. & Hardiman, O. (2007). Cognitive impairment in amyotrophic lateral sclerosis. The Lancet Neurology, 6(11), 994-1003. https://doi.org/10.1016/s1474-4422(07)70265-x

Poesen, K., De Schaepdryver, M., Stubendorff, B., Gille, B., Muckova, P., Wendler, S., . . . Van Damme, P. (2017). Neurofilament markers for ALS correlate with extent of upper and lower motor neuron disease. Neurology, 88(24), 2302-2309. https://doi.org/10.1212/wnl.0000000000004029

Pringle, C. E., Hudson, A. J., Munoz, D. G., Kiernan, J. A., Brown, W. F. & Ebers, G. C. (1992). Primary lateral sclerosis. Clinical features, neuropathology and diagnostic criteria. Brain : a journal of neurology, 115(2), 495-520. https://doi.org/10.1093/brain/115.2.495

Pupillo, E., Poloni, M., Bianchi, E., Giussani, G., Logroscino, G., Zoccolella, S., . . . Beghi, E. (2017). Trauma and amyotrophic lateral sclerosis: a european population-based case-control study from the EURALS consortium. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 19(1-2), 118-125. https://doi.org/10.1080/21678421.2017.1386687

Ravits, J. M. & La Spada, A. R. (2009). ALS motor phenotype heterogeneity, focality, and spread: Deconstructing motor neuron degeneration. Neurology, 73(10), 805-811. https://doi.org/10.1212/wnl.0b013e3181b6bbbd

Renton, A., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J., . . . Traynor, B. (2011). A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron, 72(2), 257-268. https://doi.org/10.1016/j.neuron.2011.09.010

Roggenbuck, J., Quick, A. & Kolb, S. J. (2017). Genetic testing and genetic counseling for amyotrophic lateral sclerosis: an update for clinicians. Genetics in Medicine, 19(3), 267-274. https://doi.org/10.1038/gim.2016.107

Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., . . . Brown, R. H. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362(6415), 59-62. https://doi.org/10.1038/362059a0

Ryan, M., Heverin, M., McLaughlin, R. L. & Hardiman, O. (2019). Lifetime Risk and Heritability of Amyotrophic Lateral Sclerosis. JAMA Neurology, 76(11), 1367. https://doi.org/10.1001/jamaneurol.2019.2044

Schrooten, M., Smetcoren, C., Robberecht, W. & Van Damme, P. (2011). Benefit of the Awaji diagnostic algorithm for amyotrophic lateral sclerosis: A prospective study. Annals of Neurology, 70(1), 79-83. https://doi.org/10.1002/ana.22380

Shefner, J. M., Al-Chalabi, A., Baker, M. R., Cui, L. Y., de Carvalho, M., Eisen, A., . . . Kiernan, M. C. (2020). A proposal for new diagnostic criteria for ALS. Clinical Neurophysiology, 131(8), 1975-1978. https://doi.org/10.1016/j.clinph.2020.04.005

Simon, N. G., Lomen-Hoerth, C. & Kiernan, M. C. (2014). Patterns of clinical and electrodiagnostic abnormalities in early amyotrophic lateral sclerosis. Muscle & Nerve, 50(6), 894-899. https://doi.org/10.1002/mus.24244

Smith, R. A. (2006). Antisense oligonucleotide therapy for neurodegenerative disease. Journal of Clinical Investigation, 116(8), 2290-2296. https://doi.org/10.1172/jci25424

Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B., . . . Shaw, C. E. (2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science (New York, N.Y.), 319((5870)), 1668-1672. https://doi.org/10.1126/science.1154584

Steinacker, P., Feneberg, E., Weishaupt, J., Brettschneider, J., Tumani, H., Andersen, P. M., . . . Otto, M. (2015). Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. Journal of Neurology, Neurosurgery & Psychiatry, jnnp-2015. https://doi.org/10.1136/jnnp-2015-311387

Strong, M. J., Abrahams, S., Goldstein, L. H., Woolley, S., Mclaughlin, P., Snowden, J., . . . Turner, M. R. (2017). Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 18(3-4), 153-174. https://doi.org/10.1080/21678421.2016.1267768

Taylor, J. P., Brown, R. H. & Cleveland, D. W. (2016). Decoding ALS: from genes to mechanism. Nature, 539(7628), 197-206. https://doi.org/10.1038/nature20413

Vajda, A., McLaughlin, R. L., Heverin, M., Thorpe, O., Abrahams, S., Al-Chalabi, A. & Hardiman, O. (2017). Genetic testing in ALS. Neurology, 88(10), 991-999. https://doi.org/10.1212/wnl.0000000000003686

van Blitterswijk, M., van Es, M. A., Hennekam, E. A., Dooijes, D., van Rheenen, W., Medic, J., . . . van den Berg, L. H. (2012). Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Human Molecular Genetics, 21(17), 3776-3784. https://doi.org/10.1093/hmg/dds199

Van Damme, P., Veldink, J. H., van Blitterswijk, M., Corveleyn, A., van Vught, P. W. J., Thijs, V., . . . Robberecht, W. (2011). Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology, 76(24), 2066-2072. https://doi.org/10.1212/wnl.0b013e31821f445b

van Es, M. A., Hardiman, O., Chio, A., Al-Chalabi, A., Pasterkamp, R. J., Veldink, J. H. & van den Berg, L. H. (2017). Amyotrophic lateral sclerosis. The Lancet, 390(10107), 2084-2098. https://doi.org/10.1016/s0140-6736(17)31287-4

van Es, M. A., Veldink, J. H., Saris, C. G. J., Blauw, H. M., van Vught, P. W. J., Birve, A., . . . van den Berg, L. H. (2009). Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nature Genetics, 41(10), 1083-1087. https://doi.org/10.1038/ng.442

Van Laere, K., Vanhee, A., Verschueren, J., De Coster, L., Driesen, A., Dupont, P., . . . Van Damme, P. (2014). Value of18Fluorodeoxyglucose–Positron-Emission Tomography in Amyotrophic Lateral Sclerosis. JAMA Neurology, 71(5), 553. https://doi.org/10.1001/jamaneurol.2014.62

Vance, C., Rogelj, B., Hortobágyi, T., De Vos, K. J., Nishimura, A. L., Sreedharan, J., . . . Shaw, C. E. (2009). Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6. Science, 323(5918), 1208-1211. https://doi.org/10.1126/science.1165942

Webster, C. P., Smith, E. F., Bauer, C. S., Moller, A., Hautbergue, G. M., Ferraiuolo, L., . . . De Vos, K. J. (2016). The C9orf72 protein interacts with Rab1a and the ULK 1 complex to regulate initiation of autophagy. The EMBO Journal, 35(15), 1656-1676. https://doi.org/10.15252/embj.201694401

Westeneng, H. J., Debray, T. P. A., Visser, A. E., van Eijk, R. P. A., Rooney, J. P. K., Calvo, A., . . . van den Berg, L. H. (2018). Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. The Lancet Neurology, 17(5), 423-433. https://doi.org/10.1016/s1474-4422(18)30089-9

Wijesekera, L. C., Mathers, S., Talman, P., Galtrey, C., Parkinson, M. H., Ganesalingam, J., . . . Leigh, P. N. (2009). Natural history and clinical features of the flail arm and flail leg ALS variants. Neurology, 72(12), 1087-1094. https://doi.org/10.1212/01.wnl.0000345041.83406.a2

Publicado
2022-12-21
Cómo citar
Theran león , J. S., Dulcey Sarmiento , L. A., Saenz Sandoval, E., Arango Fontecha, E. R., & Vera Quintero , D. K. (2022). Esclerosis lateral amiotrófica, revisión epidemiológica, clínica y terapéutica de una catastrófica enfermedad neurológica en términos pronósticos. Ciencia Latina Revista Científica Multidisciplinar, 6(6), 8664-8693. https://doi.org/10.37811/cl_rcm.v6i6.4026
Sección
Artículos

Artículos más leídos del mismo autor/a

1 2 > >>