Metales pesados en músculo de caquetaia kraussii, sorubim cuspicaudus, cyphocharax magdalenae y prochilodus magdalenae y métodos de cocción: una mirada eco toxicológica en el norte de Colombia

Palabras clave: peces neotropicales, salud pública, humedales, toxicología ambiental

Resumen

Se cuantificaron las concentraciones de Hg, Zn, Cd, Pb y Cu en el músculo de cuatro especies de pescado en función de los métodos de cocción; identificando riesgos potenciales a la salud de las poblaciones de La Mojana. Mediante amalgamación y espectroscopias de absorción atómica, de llama y en horno de grafito. Los metales más acumulados fueron Zn y Cu. La especie Cyphocharax magdalenae mostró las mayores concentraciones medias de Zn (8,79 ± 1,70 µg/g-1), Prochilodus magdalenae acumuló más Cd (0,067 ± 0,082µg/g-1) y Pb (0, 621 ± 0,577 µg/g-1), Caquetaia kraussii y Sorubim cuspicaudus presentaron las mayores concentraciones medias de Hg (0,388 ± 0,519 µg/g-1) y Cu (5,55 ± 5,49 µg/g-1). Los métodos de cocción guisado y frito para Hg y Zn en S. cuspicaudus, C. magdalenae y P. magdalenae mostraron diferencias significativas en las concentraciones finales. El análisis multivariable de PCA y CA jerárquico en los métodos de cocción sugiere dos grandes agrupaciones en el comportamiento y patrones de acumulación de metales: Hg y subgrupos (Cd-Pb) - (Cu-Zn). Los índices HI para el conjunto de métodos de cocción y especies mostraron un alto riesgo para la salud de la población debido a la exposición a Hg, Cd, Zn, Pb y Cu, por consumo de las especies estudiadas.

 

Descargas

La descarga de datos todavía no está disponible.

Citas

Alamdar, A., Eqani, S. A. M. A. S., Hanif, N., Ali, S. M., Fasola, M., Bokhari, H., Katsoyiannis, I. A., & Shen, H. (2017). Human exposure to trace metals and arsenic via consumption of fish from river Chenab, Pakistan and associated health risks. Chemosphere, 168, 1004–1012. https://doi.org/10.1016/j.chemosphere.2016.10.110

Atia, A.S., Darwish, W.S., Zaki, M.S. ( 2018). Monitoring of heavy metal residues, metalmetal interactions and the effect of cooking on the metal load in shellfish. J. Anim. Plant Sci. 28, 732–743.

Authman, M. M. (2015). Use of Fish as Bio-indicator of the Effects of Heavy Metals Pollution. Journal of Aquaculture Research & Development, 06(04). https://doi.org/10.4172/2155-9546.1000328

Barwick, M., & Maher, W. (2003). Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Marine Environmental Research, 56(4), 471–502. https://doi.org/10.1016/s0141

Bawuro, A. A., Voegborlo, R. B., & Adimado, A. A. (2018). Bioaccumulation of Heavy Metals in Some Tissues of Fish in Lake Geriyo, Adamawa State, Nigeria. Journal of Environmental and Public Health, 2018, 1–7. https://doi.org/10.1155/2018/1854892

Calao, C., Marrugo-Negrete, J. 2015. Efectos genotóxicos asociados a metales pesados en una población humana de la región de La Mojana, Colombia, 2013. Biomedica. 35(2). 139-151. http://dx.doi.org/10.7705/biomedica.v35i0.2392.

Cappello, T., Brandão, F., Guilherme, S., Santos, M. A., Maisano, M., Mauceri, A., Canário, J., Pacheco, M., & Pereira, P. (2016). Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish ( Liza aurata ) combining 1 H NMR metabolomics and conventional biochemical assays. Science of The Total Environment, 548–549, 13–24.

Cardwell, R. D., DeForest, D. K., Brix, K. V., & Adams, W. J. (2013). Do Cd, Cu, Ni, Pb, and Zn Biomagnify in Aquatic Ecosystems? In Reviews of Environmental Contamination and Toxicology Volume 226 (pp. 101–122). Springer New York. https://doi.org/10.1007/978-1-4614-6898-1_4

Ciji, P. P., & Bijoy Nandan, S. (2014). Toxicity of copper and zinc to Puntius parrah (Day, 1865). Marine Environmental Research, 93, 38–46. https://doi.org/10.1016/j.marenvres.2013.11.006

Clemow, Y., & Wilkie, M. P. (2015). Effects of Pb plus Cd mixtures on toxicity, and internal electrolyte and osmotic balance in the rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 161, 176–188. https://doi.org/10.1016/j.aquatox.2015.01.032

de Paula Gutiérrez, B. F., & Agudelo, C. A. R. (2020). Fish as bioindicators: coal and mercury pollution in Colombia’s ecosystems. Environmental Science and Pollution Research, 27(22), 27541–27562. https://doi.org/10.1007/s11356-020-09159-4

Díaz, S., Muñoz-Guerrero, M., Palma-Parra, M., Becerra-Arias, C., & Fernández-Niño, J. (2018). Exposure to Mercury in Workers and the Population Surrounding Gold Mining Areas in the Mojana Region, Colombia. International Journal of Environmental Research and Public Health, 15(11), 2337. https://doi.org/10.3390/ijerph15112337

Diaz, S. M., Palma, R. M., Muñoz, M. N., Becerra-Arias, C., & Fernández Niño, J. A. (2020). Factors Associated with High Mercury Levels in Women and Girls from The Mojana Region, Colombia, 2013–2015. International Journal of Environmental Research and Public Health, 17(6), 1827.

Dillon, T., Beckvar, N., & Kern, J. (2010). Residue-based mercury dose-response in fish: An analysis using lethality-equivalent test endpoints. Environmental Toxicology and Chemistry, 29(11), 2559–2565. https://doi.org/10.1002/etc.314

European Union (EU). (2017). Commission regulation (EC) No 1881/2006 (2017Rev.): Setting maximum levels for certain contaminants in foodstuffs

Fang, Y., Nie, Z., Liu, F., Die, Q., He, J., & Huang, Q. (2014). Concentration and health risk evaluation of heavy metals in market-sold vegetables and fishes based on questionnaires in Beijing, China. Environmental Science and Pollution Research, 21(19), 11401–11408. https://doi.org/10.1007/s11356-014-3127-x

FAO. (2013). Food and Agriculture Organization, 2013. http://www.fao.org/fishery/to_pic/16140/en

Farkas, A., Salánki, J., & Specziár, A. (2003). Age- and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Research, 37(5), 959–964. https://doi.org/10.1016/s0043-1354(02)00447-5

Fernandez-Maestre, R., Johnson-Restrepo, B., & Olivero-Verbel, J. (2018). Heavy Metals in Sediments and Fish in the Caribbean Coast of Colombia: Assessing the Environmental Risk. International Journal of Environmental Research, 12(3), 289–301. https://doi.org/10.1007/s41742-018-0091-1

Gámez Barrera, D., Morón Granados, E., & Fuentes Reines, J. (2016). Descripción del hábito alimentario de doce especies de peces asociados a la ciénaga grande de santa marta, Colombia. Bulletin of Marine and Coastal Research, 43(1). https://doi.org/10.25268/bimc.invemar.2014.43.1.29

Garai P, Banerjee P, Mondal P, Saha N.C. (2021). Effect of Heavy Metals on Fishes: Toxicity and Bioaccumulation. J Clin Toxicol. S18:001

Gutiérrez-Mosquera, H., Marrugo-Negrete, J., Díez, S., Morales-Mira, G., Montoya-Jaramillo, L. J., & Jonathan, M. P. (2021). Mercury distribution in different environmental matrices in aquatic systems of abandoned gold mines, Western Colombia: Focus on human health. Journal of Hazardous Materials, 404, 124080. https://doi.org/10.1016/j.jhazmat.2020.124080

Intamat, S., Phoonaploy, U., Sriuttha, M., Tengjaroenkul, B., & Neeratanaphan, L. (2016). Heavy metal accumulation in aquatic animals around the gold mine area of Loei province, Thailand. Human and Ecological Risk Assessment: An International Journal, 22(6), 1418–1432. https://doi.org/10.1080/10807039.2016.1187062

Islam, Md. S., Ahmed, Md. K., Habibullah-Al-Mamun, Md., Raknuzzaman, M., Ali, M. M., & Eaton, D. W. (2016). Health risk assessment due to heavy metal exposure from commonly consumed fish and vegetables. Environment Systems and Decisions, 36(3), 253–265. https://doi.org/10.1007/s10669-016-9592-7

Javed, M., & Usmani, N. (2014). Impact of Heavy Metal Toxicity on Hematology and Glycogen Status of Fish: A Review. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85(4), 889–900. https://doi.org/10.1007/s40011-014-0404-x

Javed, M., & Usmani, N. (2017). An Overview of the Adverse Effects of Heavy Metal Contamination on Fish Health. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89(2), 389–403. https://doi.org/10.1007/s40011-017-0875-7

Jiang, H., Qin, D., Chen, Z., Tang, S., Bai, S., & Mou, Z. (2016). Heavy Metal Levels in Fish from Heilongjiang River and Potential Health Risk Assessment. Bulletin of Environmental Contamination and Toxicology, 97(4), 536–542. https://doi.org/10.1007/s00128-016-1894-4

Kalogeropoulos, N., Karavoltsos, S., Sakellari, A., Avramidou, S., Dassenakis, M., & Scoullos, M. (2012). Heavy metals in raw, fried and grilled Mediterranean finfish and shellfish. Food and Chemical Toxicology, 50(10), 3702–3708. https://doi.org/10.1016/j.fct.2012.07.012

Kondera, E., Ługowska, K., & Sarnowski, P. (2013). High affinity of cadmium and copper to head kidney of common carp (Cyprinus carpio L.). Fish Physiology and Biochemistry, 40(1), 9–22. https://doi.org/10.1007/s10695-013-9819-1

Lee, J.-W., Choi, H., Hwang, U.-K., Kang, J.-C., Kang, Y. J., Kim, K. I., & Kim, J.-H. (2019). Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environmental Toxicology and Pharmacology, 68, 101–108. https://doi.org/10.1016/j.etap.2019.03.010

Linares Arias J.C et al., (2018a). Caracterización en la dinámica temporal de los macrohábitats acuáticos en la región de La Mojana. Informe técnico final. Convenio 15-027. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt y Universidad de Córdoba

Linares Arias J.C et al., (2018b). Caracterización en la dinámica espacial de los macrohábitats acuáticos en la región de La Mojana. Informe técnico final. Convenio 15-027. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt y Universidad de Córdoba

Liu, J., Cao, L., & Dou, S. (2019). Trophic transfer, biomagnification and risk assessments of four common heavy metals in the food web of Laizhou Bay, the Bohai Sea. Science of The Total Environment, 670, 508–522. https://doi.org/10.1016/j.scitotenv.2019.03.140

Luo, M., Yu, H., Liu, Q., Lan, W., Ye, Q., Niu, Y., & Niu, Y. (2021). Effect of river-lake connectivity on heavy metal diffusion and source identification of heavy metals in the middle and lower reaches of the Yangtze River. Journal of Hazardous Materials, 416, 125818. https://doi.org/10.1016/j.jhazmat.2021.125818

Marrugo‐Negrete, J., Pinedo‐Hernández, J., Combatt, E. M., Bravo, A. G., & Díez, S. (2019). Flood‐induced metal contamination in the topsoil of floodplain agricultural soils: A case‐study in Colombia. Land Degradation & Development, 30(17), 2139–2149. https://doi.org/10.1002/ldr.3398

Marrugo-Negrete, J., Vargas-Licona, S., Ruiz-Guzmán, J. A., Marrugo-Madrid, S., Bravo, A. G., & Díez, S. (2020). Human health risk of methylmercury from fish consumption at the largest floodplain in Colombia. Environmental Research, 182, 109050. https://doi.org/10.1016/j.envres.2019.109050

Marrugo-Negrete, J. L., Ruiz-Guzmán, J. A., & Ruiz-Fernández, A. C. (2017a). Biomagnification of Mercury in Fish from Two Gold Mining-Impacted Tropical Marshes in Northern Colombia. Archives of Environmental Contamination and Toxicology, 74(1), 121–130. https://doi.org/10.1007/s00244-017-0459-9

Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017b). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380–388. https://doi.org/10.1016/j.envres.2017.01.021

Mebane, C. A., Dillon, F. S., & Hennessy, D. P. (2012). Acute toxicity of cadmium, lead, zinc, and their mixtures to stream-resident fish and invertebrates. Environmental Toxicology and Chemistry, 31(6), 1334–1348. https://doi.org/10.1002/etc.1820

Mendoza-Carranza, M., Sepúlveda-Lozada, A., Dias-Ferreira, C., & Geissen, V. (2016). Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico. Environmental Pollution, 210, 155–165. https://doi.org/10.1016/j.envpol.2015.12.014

Mojica, J. I.; J. S. Usma; R. Álvarez-León y C. A. Lasso (Eds). (2012). Libro rojo de peces dulceacuícolas de Colombia 2012. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, WWF Colombia y Universidad de Manizales. Bogotá, D. C., Colombia, 319 pp.

Morales, B.E. (2010). Fogón Caribe-Historia de la gastronomía del Caribe colombiano. La iguana ciega, Barranquilla. ISBN: 978-958-99536-0-0

Nong, Q., Dong, H., Liu, Y., Liu, L., He, B., Huang, Y., Jiang, J., Luan, T., Chen, B., & Hu, L. (2021). Characterization of the mercury-binding proteins in tuna and salmon sashimi: Implications for health risk of mercury in food. Chemosphere, 263, 128110. https://doi.org/10.1016/j.chemosphere.2020.128110

Nunes, B., Capela, R. C., Sérgio, T., Caldeira, C., Gonçalves, F., & Correia, A. T. (2014). Effects of chronic exposure to lead, copper, zinc, and cadmium on biomarkers of the European eel, Anguilla anguilla. Environmental Science and Pollution Research, 21(8), 5689–5700. https://doi.org/10.1007/s11356-013-2485-0

Oliveri, C., Peric, L., Sforzini, S., Banni, M., Viarengo, A., Cavaletto, M., & Marsano, F. (2014). Biochemical and proteomic characterisation of haemolymph serum reveals the origin of the alkali-labile phosphate (ALP) in mussel (Mytilus galloprovincialis). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 11, 29–36. https://doi.org/10.1016/j.cbd.2014.07.003

Paschoalini, A. L., & Bazzoli, N. (2021). Heavy metals affecting Neotropical freshwater fish: A review of the last 10 years of research. Aquatic Toxicology, 237, 105906. https://doi.org/10.1016/j.aquatox.2021.105906

Pinzón-Bedoya, C. H., Pinzón-Bedoya, M. L., Pinedo-Hernández, J., Urango-Cardenas, I., & Marrugo-Negrete, J. (2020). Assessment of Potential Health Risks Associated with the Intake of Heavy Metals in Fish Harvested from the Largest Estuary in Colombia. International Journal of Environmental Research and Public Health, 17(8), 2921. https://doi.org/10.3390/ijerph17082921

Qadir, A., & Malik, R. N. (2011). Heavy Metals in Eight Edible Fish Species from Two Polluted Tributaries (Aik and Palkhu) of the River Chenab, Pakistan. Biological Trace Element Research, 143(3), 1524–1540. https://doi.org/10.1007/s12011-011-9011-3

Ríos-Touma, B., & Ramírez, A. (2019). Multiple Stressors in the Neotropical Region: Environmental Impacts in Biodiversity Hotspots. In Multiple Stressors in River Ecosystems (pp. 205–220). Elsevier. https://doi.org/10.1016/b978-0-12-811713-2.00012-1

Rúa-Cardona A. F., Flórez Molina M. T., & Palacio Baena J. (2013). Variations of seasonal and spatial Hg, Pb, Cr and organic matter contents in Ayapel Flood Plain Lake sediments, Córdoba, northwest Colombia. Revista Facultad De Ingeniería Universidad De Antioquia, (69), 244-255. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/18153

Shuhaimi-Othman, M., Yakub, N., Ramle, N.-A., & Abas, A. (2013). Comparative toxicity of eight metals on freshwater fish. Toxicology and Industrial Health, 31(9), 773–782. https://doi.org/10.1177/0748233712472519

Sun, C., Zhang, Z., Cao, H., Xu, M., & Xu, L. (2019). Concentrations, speciation, and ecological risk of heavy metals in the sediment of the Songhua River in an urban area with petrochemical industries. Chemosphere, 219, 538–545. https://doi.org/10.1016/j.chemosphere.2018.12.040

Sun, T., Wu, H., Wang, X., Ji, C., Shan, X., & Li, F. (2020). Evaluation on the biomagnification or biodilution of trace metals in global marine food webs by meta-analysis. Environmental Pollution, 264, 113856. https://doi.org/10.1016/j.envpol.2019.113856

Terán, C., Jimenez, C., González, C & Villaneda, E. (1998). Metodología para la zonificación agroclimática de la región de La Mojana mediante el sistema de información geográfica ARC/Info. Corpoica Ciencia y Tecnología Agropecuaria 2(2): 19-26. Disponible via Dialnet https://dialnet.unirioja.es/servlet/ articulo?codigo=5624812

Tesser, T. T., da Rocha, C. M., & Castro, D. (2021). Metal contamination in omnivores, carnivores and detritivores fish along the Tramandaí River Basin, RS, Brazil. Environmental Nanotechnology, Monitoring & Management, 16, 100496. https://doi.org/10.1016/j.enmm.2021.100496

Torres Perez, M. P., Romero Deimer, V., & Cordero Alexander, P. (2019). Biorremediación de mercurio y níquel por bacterias endófitas de macrófitas acuáticas. Revista Colombiana de Biotecnología, 21(2), 36–44. https://doi.org/10.15446/rev.colomb.biote.v21n2.79975

USEPA. (2010). Risk assessment guidance for superfund. In: Human Health Evaluation Manual (Part A). Volume I. pp. 2015. https://www.epa.gov/sites/production/files/2015-09/documents/rags_a.pdf

USEPA- IRIS. (2011). Evaluating the Science and Process behind Chemical Risk Assessment. Subcommittee on Investigations and Oversight of the Committee on Science, Space, and Technology, House of Representatives, 112th Cong., 1st Sess., July 14, 2011.

Vargas Licona, S. P., & Marrugo Negrete, J. L. (2019). Mercurio, metilmercurio y otros metales pesados en peces de Colombia: riesgo por ingesta. Acta Biológica Colombiana, 24(2), 232–242. https://doi.org/10.15446/abc.v24n2.74128

Winegardner, A. K., Salter, N., Aebischer, S., Pienitz, R., Derry, A. M., Wing, B., Beisner, B. E., & Gregory-Eaves, I. (2017). Cladoceran diversity dynamics in lakes from a northern mining region: responses to multiple stressors characterized by alpha and beta diversity. Canadian Journal of Fisheries and Aquatic Sciences, 74(10), 1654–1667. https://doi.org/10.1139/cjfas-2016-0449

Ye, H., Zang, S., Xiao, H., & Zhang, L. (2013). Speciation and ecological risk of heavy metals and metalloid in the sediments of Zhalong Wetland in China. International Journal of Environmental Science and Technology, 12(1), 115–124. https://doi.org/10.1007/s13762-013-0399-5

Yu, B., Wang, X., Dong, K. F., Xiao, G., & Ma, D. (2020). Heavy metal concentrations in aquatic organisms (fishes, shrimp and crabs) and health risk assessment in China. Marine Pollution Bulletin, 159, 111505. https://doi.org/10.1016/j.marpolbul.2020.111505

Zhang, J. L., Fang, L., Song, J. Y., Luo, X., Fu, K. D., & Chen, L. Q. (2019). Health risk assessment of heavy metals in Cyprinus carpio (Cyprinidae) from the upper Mekong River. Environmental Science and Pollution Research, 26(10), 9490–9499. https://doi.org/10.1007/s11356-019-04291-2

Zhou, Y., Wei, F., Zhang, W., Guo, Z., & Zhang, L. (2018). Copper bioaccumulation and biokinetic modeling in marine herbivorous fish Siganus oramin. Aquatic Toxicology, 196, 61–69. https://doi.org/10.1016/j.aquatox.2018.01.009

Publicado
2023-01-02
Cómo citar
Discuviche, M., Gomezcaceres, L., Vergara, C., & De Hoyos, K. (2023). Metales pesados en músculo de caquetaia kraussii, sorubim cuspicaudus, cyphocharax magdalenae y prochilodus magdalenae y métodos de cocción: una mirada eco toxicológica en el norte de Colombia. Ciencia Latina Revista Científica Multidisciplinar, 6(6), 11349-11377. https://doi.org/10.37811/cl_rcm.v6i6.4204
Sección
Artículos