Efecto de los inhibidores selectivos de la recaptación de serotonina en los linfocitos de pacientes con depresión
Resumen
La depresión es el trastorno mental más frecuente a nivel mundial cuya patología es compleja por los factores psicológicos y fisiopatológicos que conlleva. El tratamiento farmacológico es fundamental, no obstante, presenta altos porcentajes de resistencia ante lo cual varias investigaciones han identificado que las alteraciones del sistema inmune juegan un papel decisivo. Es por ello que el objetivo de este artículo es revisar la bibliografía actual sobre los efectos de los inhibidores selectivos de la recaptación de serotonina (ISRS), primera línea de manejo farmacológico, sobre las alteraciones del sistema inmune en pacientes con depresión. Es evidente la alteración de los linfocitos y citoquinas en la fisiopatología de la depresión y frente a los ISRS. Sin embargo, se requieren amplias investigaciones para establecer los patrones inmunes normales y su afectación frente a estos factores. Esto permitirá generar nuevas metas farmacológicas que disminuyan la resistencia, cronicidad y recurrencia de la depresión.
Descargas
Citas
Ahmetspahic, D., Schwarte, K., Ambrée, O., Bürger, C., Falcone, V., Seiler, K., Kooybaran, M. R., Grosse, L., Roos, F., Scheffer, J., Jörgens, S., Koelkebeck, K., Dannlowski, U., Arolt, V., Scheu, S., & Alferink, J. (2018). Altered B Cell Homeostasis in Patients with Major Depressive Disorder and Normalization of CD5 Surface Expression on Regulatory B Cells in Treatment Responders. Journal of Neuroimmune Pharmacology, 13(1), 90-99. https://doi.org/10.1007/s11481-017-9763-4
Aune, T. M., Golden, H. W., & McGrath, K. M. (1994). Inhibitors of serotonin synthesis and antagonists of serotonin 1A receptors inhibit T lymphocyte function in vitro and cell-mediated immunity in vivo. The Journal of Immunology, 153(2), 489-498. https://doi.org/10.4049/jimmunol.153.2.489
Banasr, M., & Duman, R. S. (2008a). Glial Loss in the Prefrontal Cortex Is Sufficient to Induce Depressive-like Behaviors. Biological Psychiatry, 64(10), 863-870. https://doi.org/10.1016/j.biopsych.2008.06.008
Banasr, M., & Duman, R. S. (2008b). Glial Loss in the Prefrontal Cortex Is Sufficient to Induce Depressive-like Behaviors. Biological Psychiatry, 64(10), 863-870. https://doi.org/10.1016/j.biopsych.2008.06.008
Barkan, T., Gurwitz, D., Levy, G., Weizman, A., & Rehavi, M. (2004). Biochemical and pharmacological characterization of the serotonin transporter in human peripheral blood lymphocytes. European Neuropsychopharmacology, 14(3), 237-243. https://doi.org/10.1016/S0924-977X(03)00107-X
Baune, B. T., Smith, E., Reppermund, S., Air, T., Samaras, K., Lux, O., Brodaty, H., Sachdev, P., & Trollor, J. N. (2012). Inflammatory biomarkers predict depressive, but not anxiety symptoms during aging: The prospective Sydney Memory and Aging Study. Psychoneuroendocrinology, 37(9), 1521-1530. https://doi.org/10.1016/j.psyneuen.2012.02.006
Bernaras, E., Jaureguizar, J., & Garaigordobil, M. (2019). Child and Adolescent Depression: A Review of Theories, Evaluation Instruments, Prevention Programs, and Treatments. Frontiers in Psychology, 10, 543. https://doi.org/10.3389/fpsyg.2019.00543
Beurel, E., Toups, M., & Nemeroff, C. B. (2020). The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron, 107(2), 234-256. https://doi.org/10.1016/j.neuron.2020.06.002
Capuron, L., Pagnoni, G., Demetrashvili, M., Woolwine, B. J., Nemeroff, C. B., Berns, G. S., & Miller, A. H. (2005). Anterior Cingulate Activation and Error Processing During Interferon-Alpha Treatment. Biological Psychiatry, 58(3), 190-196. https://doi.org/10.1016/j.biopsych.2005.03.033
Chabry, J., Nicolas, S., Cazareth, J., Murris, E., Guyon, A., Glaichenhaus, N., Heurteaux, C., & Petit-Paitel, A. (2015a). Enriched environment decreases microglia and brain macrophages inflammatory phenotypes through adiponectin-dependent mechanisms: Relevance to depressive-like behavior. Brain, Behavior, and Immunity, 50, 275-287. https://doi.org/10.1016/j.bbi.2015.07.018
Chabry, J., Nicolas, S., Cazareth, J., Murris, E., Guyon, A., Glaichenhaus, N., Heurteaux, C., & Petit-Paitel, A. (2015b). Enriched environment decreases microglia and brain macrophages inflammatory phenotypes through adiponectin-dependent mechanisms: Relevance to depressive-like behavior. Brain, Behavior, and Immunity, 50, 275-287. https://doi.org/10.1016/j.bbi.2015.07.018
Czéh, B., Simon, M., Schmelting, B., Hiemke, C., & Fuchs, E. (2006a). Astroglial Plasticity in the Hippocampus is Affected by Chronic Psychosocial Stress and Concomitant Fluoxetine Treatment. Neuropsychopharmacology, 31(8), 1616-1626. https://doi.org/10.1038/sj.npp.1300982
Czéh, B., Simon, M., Schmelting, B., Hiemke, C., & Fuchs, E. (2006b). Astroglial Plasticity in the Hippocampus is Affected by Chronic Psychosocial Stress and Concomitant Fluoxetine Treatment. Neuropsychopharmacology, 31(8), 1616-1626. https://doi.org/10.1038/sj.npp.1300982
Dantzer, R. (2009). Cytokine, Sickness Behavior, and Depression. Immunology and Allergy Clinics of North America, 29(2), 247-264. https://doi.org/10.1016/j.iac.2009.02.002
Duerschmied, D., Suidan, G. L., Demers, M., Herr, N., Carbo, C., Brill, A., Cifuni, S. M., Mauler, M., Cicko, S., Bader, M., Idzko, M., Bode, C., & Wagner, D. D. (2013). Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood, 121(6), 1008-1015. https://doi.org/10.1182/blood-2012-06-437392
Engler, H., Bailey, M. T., Engler, A., & Sheridan, J. F. (2004a). Effects of repeated social stress on leukocyte distribution in bone marrow, peripheral blood and spleen. Journal of Neuroimmunology, 148(1-2), 106-115. https://doi.org/10.1016/j.jneuroim.2003.11.011
Engler, H., Bailey, M. T., Engler, A., & Sheridan, J. F. (2004b). Effects of repeated social stress on leukocyte distribution in bone marrow, peripheral blood and spleen. Journal of Neuroimmunology, 148(1-2), 106-115. https://doi.org/10.1016/j.jneuroim.2003.11.011
Fazzino, F., Montes, C., Urbina, M., Carreira, I., & Lima, L. (2008). Serotonin transporter is differentially localized in subpopulations of lymphocytes of major depression patients. Effect of fluoxetine on proliferation. Journal of Neuroimmunology, 196(1), 173-180. https://doi.org/10.1016/j.jneuroim.2008.03.012
Fazzino, F., Urbina, M., Cedeño, N., & Lima, L. (2009). Fluoxetine treatment to rats modifies serotonin transporter and cAMP in lymphocytes, CD4+ and CD8+ subpopulations and interleukins 2 and 4. International Immunopharmacology, 9(4), 463-467. https://doi.org/10.1016/j.intimp.2009.01.011
Felger, J. C., Haroon, E., Patel, T. A., Goldsmith, D. R., Wommack, E. C., Woolwine, B. J., Le, N.-A., Feinberg, R., Tansey, M. G., & Miller, A. H. (2020). What does plasma CRP tell us about peripheral and central inflammation in depression? Molecular Psychiatry, 25(6), 1301-1311. https://doi.org/10.1038/s41380-018-0096-3
Frick, L. R., Palumbo, M. L., Zappia, M. P., Brocco, M. A., Cremaschi, G. A., & Genaro, A. M. (2008). Inhibitory effect of fluoxetine on lymphoma growth through the modulation of antitumor T-cell response by serotonin-dependent and independent mechanisms. Biochemical Pharmacology, 75(9), 1817-1826. https://doi.org/10.1016/j.bcp.2008.01.015
Frühbeis, C., Fröhlich, D., Kuo, W. P., & Krämer-Albers, E.-M. (2013). Extracellular vesicles as mediators of neuron-glia communication. Frontiers in Cellular Neuroscience, 7. https://doi.org/10.3389/fncel.2013.00182
Gimeno, D., Kivimäki, M., Brunner, E. J., Elovainio, M., De Vogli, R., Steptoe, A., Kumari, M., Lowe, G. D. O., Rumley, A., Marmot, M. G., & Ferrie, J. E. (2009). Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study. Psychological Medicine, 39(3), 413-423. https://doi.org/10.1017/S0033291708003723
Gobin, V., Van Steendam, K., Denys, D., & Deforce, D. (2014). Selective serotonin reuptake inhibitors as a novel class of immunosuppressants. International Immunopharmacology, 20(1), 148-156. https://doi.org/10.1016/j.intimp.2014.02.030
Hannestad, J., DellaGioia, N., & Bloch, M. (2011). The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: A meta-analysis. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 36(12), 2452-2459. https://doi.org/10.1038/npp.2011.132
Herkenham, M., & Kigar, S. L. (2017). Contributions of the adaptive immune system to mood regulation: Mechanisms and pathways of neuroimmune interactions. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 79, 49-57. https://doi.org/10.1016/j.pnpbp.2016.09.003
Hernández, M. E., Mendieta, D., Martínez-Fong, D., Loría, F., Moreno, J., Estrada, I., Bojalil, R., & Pavón, L. (2008). Variations in circulating cytokine levels during 52 week course of treatment with SSRI for major depressive disorder. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 18(12), 917-924. https://doi.org/10.1016/j.euroneuro.2008.08.001
Hernandez, M. E., Mendieta, D., Pérez-Tapia, M., Bojalil, R., Estrada-Garcia, I., Estrada-Parra, S., & Pavón, L. (2013). Effect of Selective Serotonin Reuptake Inhibitors and Immunomodulator on Cytokines Levels: An Alternative Therapy for Patients with Major Depressive Disorder. Journal of Immunology Research, 2013, e267871. https://doi.org/10.1155/2013/267871
Himmerich⁎, H., & Rink et al., L. (2010). Regulatory T cells increased while IL-1beta decreased during antidepressant therapy. Journal of Affective Disorders, 122, S39. https://doi.org/10.1016/j.jad.2010.02.021
Jia, X., Gao, Z., & Hu, H. (2021). Microglia in depression: Current perspectives. Science China Life Sciences, 64(6), 911-925. https://doi.org/10.1007/s11427-020-1815-6
Khandaker, G. M., Pearson, R. M., Zammit, S., Lewis, G., & Jones, P. B. (2014). Association of Serum Interleukin 6 and C-Reactive Protein in Childhood With Depression and Psychosis in Young Adult Life: A Population-Based Longitudinal Study. JAMA Psychiatry, 71(10), 1121. https://doi.org/10.1001/jamapsychiatry.2014.1332
Kim, I.-B., Lee, J.-H., & Park, S.-C. (2022). The Relationship between Stress, Inflammation, and Depression. Biomedicines, 10(8), 1929. https://doi.org/10.3390/biomedicines10081929
Köhler, C. A., Freitas, T. H., Maes, M., de Andrade, N. Q., Liu, C. S., Fernandes, B. S., Stubbs, B., Solmi, M., Veronese, N., Herrmann, N., Raison, C. L., Miller, B. J., Lanctôt, K. L., & Carvalho, A. F. (2017). Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatrica Scandinavica, 135(5), 373-387. https://doi.org/10.1111/acps.12698
Kubera, M., Maes, M., Kenis, G., Kim, Y.-K., & Lasoń, W. (2005). Effects of serotonin and serotonergic agonists and antagonists on the production of tumor necrosis factor alpha and interleukin-6. Psychiatry Research, 134(3), 251-258. https://doi.org/10.1016/j.psychres.2004.01.014
León-Ponte, Matilde, Ahern, G. P., & O’Connell, P. J. (2007). Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood, 109(8), 3139-3146. https://doi.org/10.1182/blood-2006-10-052787
Lima-Ojeda, J. M., Rupprecht, R., & Baghai, T. C. (2018). Neurobiology of depression: A neurodevelopmental approach. The World Journal of Biological Psychiatry, 19(5), 349-359. https://doi.org/10.1080/15622975.2017.1289240
Maes, M. (1995). Evidence for an immune response in major depression: A review and hypothesis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 19(1), 11-38. https://doi.org/10.1016/0278-5846(94)00101-M
Manji, H. K., Quiroz, J. A., Sporn, J., Payne, J. L., Denicoff, K., A. Gray, N., Zarate, C. A., & Charney, D. S. (2003a). Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for Difficult-to-Treat depression. Biological Psychiatry, 53(8), 707-742. https://doi.org/10.1016/S0006-3223(03)00117-3
Manji, H. K., Quiroz, J. A., Sporn, J., Payne, J. L., Denicoff, K., A. Gray, N., Zarate, C. A., & Charney, D. S. (2003b). Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for Difficult-to-Treat depression. Biological Psychiatry, 53(8), 707-742. https://doi.org/10.1016/S0006-3223(03)00117-3
McKim, D. B., Weber, M. D., Niraula, A., Sawicki, C. M., Liu, X., Jarrett, B. L., Ramirez-Chan, K., Wang, Y., Roeth, R. M., Sucaldito, A. D., Sobol, C. G., Quan, N., Sheridan, J. F., & Godbout, J. P. (2018a). Microglial recruitment of IL-1β-producing monocytes to brain endothelium causes stress-induced anxiety. Molecular Psychiatry, 23(6), 1421-1431. https://doi.org/10.1038/mp.2017.64
McKim, D. B., Weber, M. D., Niraula, A., Sawicki, C. M., Liu, X., Jarrett, B. L., Ramirez-Chan, K., Wang, Y., Roeth, R. M., Sucaldito, A. D., Sobol, C. G., Quan, N., Sheridan, J. F., & Godbout, J. P. (2018b). Microglial recruitment of IL-1β-producing monocytes to brain endothelium causes stress-induced anxiety. Molecular Psychiatry, 23(6), 1421-1431. https://doi.org/10.1038/mp.2017.64
Medina-Rodriguez, E. M., Lowell, J. A., Worthen, R. J., Syed, S. A., & Beurel, E. (2018). Involvement of Innate and Adaptive Immune Systems Alterations in the Pathophysiology and Treatment of Depression. Frontiers in Neuroscience, 12. https://www.frontiersin.org/articles/10.3389/fnins.2018.00547
Miguel-Hidalgo, J. J., Waltzer, R., Whittom, A. A., Austin, M. C., Rajkowska, G., & Stockmeier, C. A. (2010a). Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. Journal of Affective Disorders, 127(1-3), 230-240. https://doi.org/10.1016/j.jad.2010.06.003
Miguel-Hidalgo, J. J., Waltzer, R., Whittom, A. A., Austin, M. C., Rajkowska, G., & Stockmeier, C. A. (2010b). Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. Journal of Affective Disorders, 127(1-3), 230-240. https://doi.org/10.1016/j.jad.2010.06.003
Miyamoto, A., Wake, H., Moorhouse, A. J., & Nabekura, J. (2013). Microglia and synapse interactions: Fine tuning neural circuits and candidate molecules. Frontiers in Cellular Neuroscience, 7. https://doi.org/10.3389/fncel.2013.00070
O’Connell, P. J., Wang, X., Leon-Ponte, M., Griffiths, C., Pingle, S. C., & Ahern, G. P. (2006). A novel form of immune signaling revealed by transmission of the inflammatory mediator serotonin between dendritic cells and T cells. Blood, 107(3), 1010-1017. https://doi.org/10.1182/blood-2005-07-2903
Pellegrino, T. C., & Bayer, B. M. (2000). Specific Serotonin Reuptake Inhibitor-Induced Decreases in Lymphocyte Activity Require Endogenous Serotonin Release. Neuroimmunomodulation, 8(4), 179-187. https://doi.org/10.1159/000054278
Sofroniew, M. V., & Vinters, H. V. (2010a). Astrocytes: Biology and pathology. Acta Neuropathologica, 119(1), 7-35. https://doi.org/10.1007/s00401-009-0619-8
Sofroniew, M. V., & Vinters, H. V. (2010b). Astrocytes: Biology and pathology. Acta Neuropathologica, 119(1), 7-35. https://doi.org/10.1007/s00401-009-0619-8
Taler, M., Gil-Ad, I., Lomnitski, L., Korov, I., Baharav, E., Bar, M., Zolokov, A., & Weizman, A. (2007). Immunomodulatory effect of selective serotonin reuptake inhibitors (SSRIs) on human T lymphocyte function and gene expression. European Neuropsychopharmacology, 17(12), 774-780. https://doi.org/10.1016/j.euroneuro.2007.03.010
Troubat, R., Barone, P., Leman, S., Desmidt, T., Cressant, A., Atanasova, B., Brizard, B., El Hage, W., Surget, A., Belzung, C., & Camus, V. (2021). Neuroinflammation and depression: A review. European Journal of Neuroscience, 53(1), 151-171. https://doi.org/10.1111/ejn.14720
Tubbs, J. D., Ding, J., Baum, L., & Sham, P. C. (2020). Immune dysregulation in depression: Evidence from genome-wide association. Brain, Behavior, & Immunity - Health, 7, 100108. https://doi.org/10.1016/j.bbih.2020.100108
Vilela Manyari, M., Martínez Salinas, I., Andrade-González, N., & Lahera, G. (2017). Tratamiento farmacológico de la depresión: Comparación entre las principales Guías de Práctica Clínica. Revista de Investigación y Educación en Ciencias de la Salud (RIECS), 2(1), 72-84. https://doi.org/10.37536/RIECS.2017.2.1.27
Wohleb, E. S., Powell, N. D., Godbout, J. P., & Sheridan, J. F. (2013a). Stress-Induced Recruitment of Bone Marrow-Derived Monocytes to the Brain Promotes Anxiety-Like Behavior. Journal of Neuroscience, 33(34), 13820-13833. https://doi.org/10.1523/JNEUROSCI.1671-13.2013
Wohleb, E. S., Powell, N. D., Godbout, J. P., & Sheridan, J. F. (2013b). Stress-Induced Recruitment of Bone Marrow-Derived Monocytes to the Brain Promotes Anxiety-Like Behavior. Journal of Neuroscience, 33(34), 13820-13833. https://doi.org/10.1523/JNEUROSCI.1671-13.2013
WORLD HEALTH ORGANIZATION. (2017). Depression and Other Common Mental Disorders. the WHO Document Production Services. https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf?s
Xia, Z., DePierre, J. W., & Nässberger, L. (1996). Dysregulation of bcl-2, c-myc, and Fas expression during tricyclic antidepressant-induced apoptosis in human peripheral lymphocytes. Journal of Biochemical Toxicology, 11(4), 203-204. https://doi.org/10.1002/(SICI)1522-7146(1996)11:4<203::AID-JBT6>3.0.CO;2-O
Yin, J., Albert, R. H., Tretiakova, A. P., & Jameson, B. A. (2006). 5-HT1B receptors play a prominent role in the proliferation of T-lymphocytes. Journal of Neuroimmunology, 181(1), 68-81. https://doi.org/10.1016/j.jneuroim.2006.08.004
Zheng, X., Ma, S., Kang, A., Wu, M., Wang, L., Wang, Q., Wang, G., & Hao, H. (2016a). Chemical dampening of Ly6Chi monocytes in the periphery produces anti-depressant effects in mice. Scientific Reports, 6(1), 19406. https://doi.org/10.1038/srep19406
Zheng, X., Ma, S., Kang, A., Wu, M., Wang, L., Wang, Q., Wang, G., & Hao, H. (2016b). Chemical dampening of Ly6Chi monocytes in the periphery produces anti-depressant effects in mice. Scientific Reports, 6(1), 19406. https://doi.org/10.1038/srep19406
Derechos de autor 2023 Alison Doménica Castillo Reyes ;Carolina Monserrath Aucanshala Pilatuña ;Joseph Alexander Cáceres Llerena ;Jessica Priscila Ayala Baño ;Solange Aracely Bonilla Fernández ;José David Campos Villegas ;Scarleth Nayeli Castillo Trujillo ;María de los Ángeles Aguilar Ochoa

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.