Tendencias del big data y cloud computing: Bibliometría del 2010 al 2020
Resumen
En el presente estudio se identificaron las tendencias más significativas de los documentos científicos de alto impacto analizados con respecto al Big Data y Cloud Computing durante el periodo comprendido entre los años 2010 al 2020, cuya revisión se realizó en las bases de datos Web of Science (WoS) y Scopus de 111 artículos. Los resultados fueron varios, como, por ejemplo, B. Dong como el autor con más publicaciones, China, Estados Unidos e India como los países con más estudios y estos primeros los que más colaboran entre si; por mencionar algunos.
Descargas
Citas
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of In- formetrics, 11(4), 959-975.
Baek, J., Vu, Q. H., Liu, J. K., Huang, X., & Xiang, Y. (2014). A secure cloud computing based framework for big data information management of smart grid. IEEE transac- tions on cloud computing, 3(2), 233-244. doi: 10.1109/TCC.2014.2359460
Belfiore, P., Iovino, S., & Tafuri, D. (2019). Sport manage- ment and educational management: a bibliometric analysis. Sport Science, 12(1), 61-64.
Cai, H., Xu, B., Jiang, L., & Vasilakos, A. V. (2016). IoT- based big data storage systems in cloud computing: perspectives and challenges. IEEE Internet of Things Journal, 4(1), 75-87. DOI: 10.1109/JIOT.2016.2619369
Chen, J., Li, K., Tang, Z., Bilal, K., Yu, S., Weng, C., & Li, K. (2016). A parallel random forest algorithm for big data in a spark cloud computing environment. IEEE Transac- tions on Parallel and Distributed Systems, 28(4), 919- 933. DOI: 10.1109/TPDS.2016.2603511
Gai, K., Qiu, M., Zhao, H., & Xiong, J. (2016, June). Privacy- aware adaptive data encryption strategy of big data in cloud computing. In 2016 IEEE 3rd International Confe- rence on Cyber Security and Cloud Computing (CSCloud) (pp. 273-278). IEEE. doi: 10.1109/CSCloud.2016.52
Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Informa- tion systems, 47, 98-115. DOI: 10.1016/j.is.2014.07.006
Hilbert, M. y López, P. (2011). The world's technological capacity to store, communicate, and compute information. Science, 332(60), 60-65.
Lo’ai, A. T., Mehmood, R., Benkhlifa, E., & Song, H. (2016). Mobile cloud computing model and big data analysis for healthcare applications. IEEE Access, 4, 6171-6180. DOI: 10.1109/ACCESS.2016.2613278
Lo'ai, A. T., Bakheder, W., & Song, H. (2016, June). A mobi- le cloud computing model using the cloudlet scheme for big data applications. In 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) (pp. 73-77). IEEE. DOI: 10.1109/CHASE.2016.40
Li, M. y Cao, S. (2014). A serie method of massive information storage, retrieval and sharing. En Mechatronics and Automation (ICMA), 2014 IEEE International Conference on (pp. 1171-1175). IEEE.
Li, J., Huang, L., Zhou, Y., He, S., & Ming, Z. (2017).
Computation partitioning for mobile cloud computing in a big data environment. IEEE Transactions on Industrial Informatics, 13(4), 2009-2018. DOI: 10.1109/TII.2017.2651880
Li, Y., Gai, K., Qiu, L., Qiu, M., & Zhao, H. (2017). Intelligent cryptography approach for secure distributed big data storage in cloud computing. Information Sciences, 387, 103-115. DOI: 10.1016/j.ins.2016.09.005
Liu, X., Singh, P. V., & Srinivasan, K. (2016). A structured analysis of unstructured big data by leveraging cloud computing. Marketing Science, 35(3), 363-388. DOI: 10.1287/mksc.2015.0972
Lyman, P. y Varian, H. (2003). How much information. Estados Unidos: Universidad de California. Recuperado de http://www2.sims.berkeley.edu/research/projects/howmuchinfo2003
Manogaran, G., Thota, C., & Kumar, M. V. (2016). Meta- CloudDataStorage architecture for big data security in cloud computing. Procedia Computer Science, 87, 128- 133. DOI: 10.1016/j.procs.2016.05.138
Nafade, V., Nash, M., Huddart, S., Pande, T., Gebreselas- sie, N., Lienhardt, C., & Pai, M. (2018). A bibliometric analysis of tuberculosis research, 2007–2016. PLoS One, 13(6).
Pérez, M. M. S. (2015). Big Data O La Acumulación Masiva De Datos Sanitarios : Derechos En Riesgo, 10–12.
Sookhak, M. (2015). Dynamic remote data auditing for secu- ring big data storage in cloud computing (Doctoral dis- sertation, University of Malaya). DOI: 10.1016/j.ins.2015.09.004
Stergiou, C., & Psannis, K. E. (2017). Recent advances delivered by Mobile Cloud Computing and Internet of Things for Big Data applications: a survey. International Journal of Network Management, 27(3), e1930. DOI: 10.1002/nem.1930
Varatharajan, R., Manogaran, G., & Priyan, M. K. (2018). A big data classification approach using LDA with an en- hanced SVM method for ECG signals in cloud compu- ting. Multimedia Tools and Applications, 10195-10215. DOI:10.1007/s11042-017-5318-1 Yang, C., Huang, Q., Li, Z., Liu, K., & Hu, F. (2017). Big Data and cloud computing: innovation opportunities and cha- llenges. International Journal of Digital Earth, 10(1), 13- 53.
Wang, L., Ma, Y., Yan, J., Chang, V., & Zomaya, A. Y. (2018). pipsCloud: High performance cloud computing for remote sensing big data management and proces- sing. Future Generation Computer Systems, 78, 353- 368. DOI: 10.1016/j.future.2016.06.009
Xu, J., Huang, E., Chen, C. H., & Lee, L. H. (2015). Simula- tion optimization: A review and exploration in the new era of cloud computing and big data. Asia-Pacific Jour- nal of Operational Research, 32(03), 1550019. DOI:10.1142/S0217595915500190
Yang, C., Huang, Q., Li, Z., Liu, K., & Hu, F. (2017). Big Data and cloud computing: innovation opportunities and challenges. International Journal of Digital Earth, 10(1), 13-53.
Zhang, Q., Yang, L. T., Chen, Z., Li, P., & Bu, F. (2018). An adaptive dropout deep computation model for industrial IoT big data learning with crowdsourcing to cloud com- puting. IEEE Transactions on Industrial Informatics, 15(4), 2330-2337. DOI: 10.1109/TII.2018.2791424
Derechos de autor 2021 Francisco Hernández García
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.