Beneficios potenciales de la Metformina en enfermedades relacionadas con la edad

Palabras clave: Metformina, diabetes tipo 2,, AMPK, redox

Resumen

La metformina (clorhidrato de 1,1-dimetilbiguanida) es un medicamento seguro y de bajo costo utilizado ampliamente como primera línea de terapia en el tratamiento de la diabetes tipo 2 por producir un efecto reductor en los niveles de glucosa en plasma. Esta biguanida sola o en terapia combinada ha demostrado tener efectos protectores para varias enfermedades relacionadas con la edad. En la actualidad se han descubierto varios beneficios de la metformina en enfermedades como cáncer, obesidad, aterosclerosis e hipertensión. Además, posee propiedades pleiotrópicas como la disminución de lípidos en plasma, disminución de estrés oxidante, el aumento en la producción de ácidos grasos de cadena corta y el incremento en la esperanza de vida. Los mecanismos subyacentes de la metformina en la regulación de estas enfermedades no están todavía claros. Aquí, resumimos las funciones de la metformina que pueden ayudar a proporcionar información a futuras investigaciones.

Descargas

La descarga de datos todavía no está disponible.

Citas

Aharaz, A., Pottegård, A., Henriksen, D. P., Hallas, J., Beck-Nielsen, H. & Lassen, A. T. (2018). Risk of lactic acidosis in type 2 diabetes patients using metformin: A case control study. PLoS One, 13(5), e0196122. DOI: 10.1371/journal.pone.0196122.

Algire, C., Moiseeva, O., Deschênes-Simard, X., Amrein, L., Petruccelli, L., Birman, E., Viollet, B., Ferbeyre & G., Pollak, M. N. (2012). Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res (Phila), 5(4), 536-543. DOI: 10.1158/1940-6207.CAPR-11-0536.

Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. (2016). Metformin as a tool to target aging. Cell Metab, 23(6), 1060-1065. DOI: 10.1016/j.cmet.2016.05.011.

Bhat, A., Sebastiani, G. & Bhat, M. (2015). Systematic review: Preventive and therapeutic applications of metformin in liver disease. World J Hepatol, 7(12), 1652-1659. DOI: 10.4254/wjh.v7.i12.1652.

Blonde, L., Dipp, S. & Cadena, D. (2018). Combination glucose-lowering therapy plans in T2DM: Case-based considerations. Adv Ther, 35(7), 939-965. DOI: 10.1007/s12325-018-0694-0.

Breining, P., Jensen, J. B., Sundelin, E. I., Gormsen, L. C., Jakobsen, S., Busk, M., Rolighed, L., Bross, P., Fernandez-Guerra, P., Markussen, L. K., Rasmussen, N. E., Hansen, J. B., Pedersen, S. B., Richelsen, B. & Jessen, N. (2018). Metformin targets brown adipose tissue in vivo and reduces oxygen consumption in vitro. Diabetes Obes Metab, 2(9), 2264-2273. DOI: 10.1111/dom.13362.

Cameron, A. R., Logie, L., Patel, K., Erhardt, S., Bacon, S., Middleton, P., Harthill, J., Forteath, C., Coats, J. T., Kerr, C., Curry, H., Stewart, D., Sakamoto, K., Repiščák, P., Paterson, M. J., Hassinen, I., McDougall, G. & Rena, G. (2018). Metformin selectively targets redox control of complex I energy transduction. Redox Biol, 14(2), 187-197. DOI: 10.1016/j.redox.2017.08.018.

Dai, J. Z., Wang, Y. J., Chen, C. H., Tsai, I. L., Chao, Y. C. & Lin, C. W. (2022). YAP dictates mitochondrial redox homeostasis to facilitate obesity-associated breast cancer progression. Adv Sci (Weinh), 9(12), e2103687. DOI: 10.1002/advs.202103687.

DeFronzo, R., Fleming, G. A., Chen, K. & Bicsak, T. A. (2016). Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism, 65(2), 20-29. DOI: 10.1016/j.metabol.2015.10.014.

Fei, Q., Ma, H., Zou, J., Wang, W., Zhu, L., Deng, H., Meng, M., Tan, S., Zhang, H., Xiao, X., Wang, N. & Wang, K. (2020). Metformin protects against ischaemic myocardial injury by alleviating autophagy-ROS-NLRP3-mediated inflammatory response in macrophages. J Mol Cell Cardiol, 145(2), 1-13. DOI: 10.1016/j.yjmcc.2020.05.016.

Feng, Y., Ke, C., Tang, Q., Dong, H., Zheng, X., Lin, W., Ke, J., Huang, J., Yeung, S. C. & Zhang, H. (2014). Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis, 5(2):e1088. DOI: 10.1038/cddis.2014.59.

Fleming, J. B., Gonzalez, R. J., Petzel, M. Q., Lin, E., Morris, J. S., Gomez, H., Lee, J. E., Crane, C. H., Pisters, P. W. & Evans, D. B. (2009). Influence of obesity on cancer-related outcomes after pancreatectomy to treat pancreatic adenocarcinoma. Arch Surg. 2009 Mar;144(3):216-21. doi: 10.1001/archsurg.2008.580.

Foretz, M., Guigas, B. & Viollet, B. (2019). Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol, 15(10), 569-589. DOI: 10.1038/s41574-019-0242-2.

Gandini, S., Puntoni, M., Heckman-Stoddard, B. M., Dunn, B. K., Ford, L., DeCensi, A. & Szabo, E. (2014). Metformin and cancer risk and mortality: a systematic review and meta-analysis taking into account biases and confounders. Cancer Prev Res, 7(9), 867-885. DOI: 10.1158/1940-6207.

Graham, G. G., Punt, J., Arora, M., Day, R. O., Doogue, M. P., Duong, J. K., Furlong, T. J., Greenfield, J. R., Greenup, L. C., Kirkpatrick, C. M., Ray, J. E., Timmins, P. & Williams, K. M. (2011). Clinical pharmacokinetics of metformin. Clin Pharmacokinet, 50(2), 81-98. DOI: 10.2165/11534750-000000000-00000.

Gunton, J. E., Delhanty, P. J., Takahashi, S. & Baxter, R. C (2003). Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2. J Clin Endocrinol Metab, 88(3), 1323-1332. DOI: 10.1210/jc.2002-021394.

Hardie, D. G., Ross, F. A. & Hawley, S. A. (2012). AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol, 13(4), 251-262. DOI: 10.1038/nrm3311.

Hattori, Y., Suzuki, K., Hattori, S. & Kasai, K. (2006). Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension, 47(6), 1183-1188. DOI: 10.1161/01.HYP.0000221429.94591.72.

Huang, N. L., Chiang, S. H., Hsueh, C. H., Liang, Y. J., Chen, Y. J. & Lai, L. P. (2009). Metformin inhibits TNF-alpha-induced IkappaB kinase phosphorylation, IkappaB-alpha degradation and IL-6 production in endothelial cells through PI3K-dependent AMPK phosphorylation. Int J Cardiol, 134(2), 169-175. DOI: 10.1016/j.ijcard.2008.04.010.

Inzucchi, S. E., Lipska, K. J., Mayo, H., Bailey, C. J. & McGuire, D. K. (2014). Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA, 312(24), 2668-2675. DOI: 10.1001/jama.2014.

Jang, S. G., Lee, J., Hong, S. M., Kwok, S. K., Cho, M. L. & Park, S. H. (2020). Metformin enhances the immunomodulatory potential of adipose-derived mesenchymal stem cells through STAT1 in an animal model of lupus. Rheumatology (Oxford), 59(6), 1426-1438. DOI: 10.1093/rheumatology/kez631.

Kheniser, K. G., Kashyap, S. R. & Kasumov, T. (2019). A systematic review: the appraisal of the effects of metformin on lipoprotein modification and function. Obes Sci Pract, 5(1), 36-45. DOI: 10.1002/osp4.309.

Kristensen, J. M., Treebak, J. T., Schjerling, P., Goodyear, L. & Wojtaszewski, J. F (2014). Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle. Am J Physiol Endocrinol Metab, 306(10), E1099-1109. DOI: 10.1152/ajpendo.00417.2013.

Lamanna, C., Monami, M., Marchionni, N. & Mannucci, E. (2011). Effect of metformin on cardiovascular events and mortality: a meta-analysis of randomized clinical trials. Diabetes Obes Metab, 13(3), 221-228. DOI: 10.1111/j.1463-1326.2010.01349.x.

Lin, S. C. & Hardie, D. G. (2018). AMPK: Sensing glucose as well as cellular energy status. Cell Metab, 27(2), 299-313. DOI: 10.1016/j.cmet.2017.10.009.

Liu, G., Wu, K., Zhang, L., Dai, J., Huang, W., Lin, L., Ge, P., Luo & F., Lei, H. (2017). Metformin attenuated endotoxin-induced acute myocarditis via activating AMPK. Int Immunopharmacol, 47(3), 166-172. DOI: 10.1016/j.intimp.2017.04.002.

Madiraju, A. K., Erion, D. M., Rahimi, Y., Zhang, X. M., Braddock, D. T., Albright, R. A., Prigaro, B. J., Wood, J. L., Bhanot, S., MacDonald, M. J., Jurczak, M. J., Camporez, J. P., Lee, H. Y., Cline, G. W., Samuel, V. T., Kibbey, R. G. & Shulman, G. I. (2014). Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature, 510(7506), 542-546. DOI: 10.1038/nature13270.

Marshall, S. M. (2017). 60 years of metformin use: a glance at the past and a look to the future. Diabetologia, 60(9), 1561-1565. DOI: 10.1007/s00125-017-4343-y.

Morales, D. R. & Morris, A. D. (2015). Metformin in cancer treatment and prevention. Annu Rev Med, 66(1), 17-29. DOI: 10.1146/annurev-med-062613-093128.

Mummidi, S., Das, N. A., Carpenter, A. J., Kandikattu, H., Krenz, M., Siebenlist, U., Valente, A. J & Chandrasekar, B. (2016). Metformin inhibits aldosterone-induced cardiac fibroblast activation, migration and proliferation in vitro, and reverses aldosterone+salt-induced cardiac fibrosis in vivo. J Mol Cell Cardiol, 98(1), 95-102. DOI: 10.1016/j.yjmcc.2016.07.006.

Neven, E., Vervaet, B., Brand, K., Gottwald-Hostalek, U., Opdebeeck, B., De Maré, A., Verhulst, A., Lalau, J. D., Kamel, S., De Broe, M. E. & D'Haese, P. C. (2018). Metformin prevents the development of severe chronic kidney disease and its associated mineral and bone disorder. Kidney Int, 94(1), 102-113. DOI: 10.1016/j.kint.2018.01.027.

Oliveira, P. W .C., de Sousa, G. J., Birocale, A. M., Gouvêa, S. A., de Figueiredo, S. G., de Abreu, G. R. & Bissoli, N. S. (2020). Chronic metformin reduces systemic and local inflammatory proteins and improves hypertension-related cardiac autonomic dysfunction. Nutr Metab Cardiovasc Dis, 30(2), 274-281. DOI: 10.1016/j.numecd.2019.09.005.

Papanagnou, P., Stivarou, T. & Tsironi, M. (2016). Unexploited antineoplastic effects of commercially available anti-diabetic drugs. Pharmaceuticals, 9(2), 1-24. DOI: 10.3390/ph9020024.

Patrone, C., Eriksson, O. & Lindholm, D. (2014). Diabetes drugs and neurological disorders: new views and therapeutic possibilities. Lancet Diabetes Endocrinol, 2(3), 256-262. DOI: 10.1016/S2213-8587(13)70125-6.

Pereira, P. M. R., Mandleywala, K., Ragupathi, A. & Lewis, J. S. (2020). Acute statin treatment improves antibody accumulation in EGFR- and PSMA-expressing tumors. Clin Cancer Res, 26(23), 6215-6229. DOI: 10.1158/1078-0432.CCR-20-1960.

Purcell, . S.A, Oliveira, C. L. P., Mackenzie, M., Robson, P., Lewis, J. D. & Prado, C. M. (2022). Body composition and prostate cancer risk: A systematic review of bservational studies. Adv Nutr, 13(4), 1118-1130. DOI: 10.1093/advances/nmab153.

Putilin, D. A., Evchenko, S. Y., Fedoniuk, L. Y., Tokarskyy, O. S., Kamyshny, O. M., Migenko, L. M., Andreychyn, S. M., Hanberher, I. I. & Bezruk, T.O. (2020). The influence of metformin to the transcriptional activity of the mTOR and FOX3 genes in parapancreatic adipose tissue of streptozotocin-induced diabetic rats. J Med Life, 3(1), 50-55. DOI: 10.25122/jml-2020-0029.

Rubinsztein, D. C., Mariño, G. & Kroemer, G. (2011). Autophagy and aging. Cell, 146(5), 682-695. DOI: 10.1016/j.cell.2011.07.030.

Salpeter, S. R., Greyber, E., Pasternak, G. A. & Salpeter, E. E. (2010). Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev, 2(4), CD002967. DOI: 10.1002/14651858.CD002967.pub4.

Song, Y. M., Lee, Y. H., Kim, J. W., Ham, D. S., Kang, E. S., Cha, B. S., Lee, H. C. & Lee, B. W. (2015). Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy, 11(1), 46-59. DOI: 10.4161/15548627.2014.984271.

Soraya, H., Farajnia, S., Khani, S., Rameshrad, M., Khorrami, A., Banani, A., Maleki-Dizaji, N., Garjani, A (2012). Short-term treatment with metformin suppresses toll like receptors (TLRs) activity in isoproterenol-induced myocardial infarction in rat: are AMPK and TLRs connected? Int Immunopharmacol, 14(4), 785-791. DOI: 10.1016/j.intimp.2012.10.014.

Sun, Y., Li, J., Xiao, N., Wang, M., Kou, J., Qi, L., Huang, F., Liu & B., Liu, K. (2014). Pharmacological activation of AMPK ameliorates perivascular adipose/endothelial dysfunction in a manner interdependent on AMPK and SIRT1. Pharmacol Res, 89(1), 19-28. DOI: 10.1016/j.phrs.2014.07.006.

Tian, R., Li, R., Liu, Y., Liu, J., Pan, T., Zhang, R., Liu, B., Chen, E., Tang, Y., Qu, H. (2019). Metformin ameliorates endotoxemia-induced endothelial pro-inflammatory responses via AMPK-dependent mediation of HDAC5 and KLF2. Biochim Biophys Acta Mol Basis Dis, 1865(6), 1701-1712. DOI: 10.1016/j.bbadis.2019.04.009.

Vaez, H., Najafi, M., Rameshrad, M., Toutounchi, N. S., Garjani, M., Barar, J. & Garjani, A. (2016). AMPK activation by metformin inhibits local innate immune responses in the isolated rat heart by suppression of TLR 4-related pathway. Int Immunopharmacol, 40(2), 501-507. DOI: 10.1016/j.intimp.2016.10.002.

Valencia, W. M., Palacio, A., Tamariz, L. & Florez, H. (2017). Metformin and ageing: improving ageing outcomes beyond glycaemic control. Diabetologia, 60(9), 1630-1638. DOI: 10.1007/s00125-017-4349-5.

Wang, D. S., Jonker, J. W., Kato, Y., Kusuhara, H., Schinkel, A. H. & Sugiyama, Y. (2002). Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther, 302(2), 510-515. DOI: 10.1124/jpet.102.034140.

Witters, L. A. (2001). The blooming of the French lilac. J Clin Invest, 108(8),1105-1107. DOI: 10.1172/JCI14178.

Wu, H. & Ballantyne, C. M. (2020). Metabolic Inflammation and Insulin Resistance in Obesity. Circ Res, 126(11), 1549-1564. DOI: 10.1161/CIRCRESAHA.119.315896.

Xu, S., Lam, S. K., Cheng, P. N. & Ho, J. C. (2018). Recombinant human arginase induces apoptosis through oxidative stress and cell cycle arrest in small cell lung cancer. Cancer Sci, 109(11), 3471-3482. DOI: 10.1111/cas.13782.

Zhang, J., Huang, L., Shi, X., Yang, L., Hua, F., Ma, J., Zhu, W., Liu, X., Xuan, R., Shen, Y., Liu, J., Lai, X. & Yu, P. (2020). Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Aging (Albany NY), 12(23), 24270-24287. DOI: 10.18632/aging.202143.

Zhang, L., Dresser, M. J., Gray, A. T., Yost, S. C., Terashita, S. & Giacomini, K. M. (1997). Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol, 51(6), 913-921. DOI: 10.1124/mol.51.6.913.

Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre,J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J. & Moller, D. E. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest, 108(8), 1167-1174. DOI: 10.1172/JCI13505.

Publicado
2023-06-15
Cómo citar
Ramos-Sánchez, J. S., Angulo-Camacho, J. Ángel, Pérez-Lagunes, R., & Ibarra-Sánchez, A. (2023). Beneficios potenciales de la Metformina en enfermedades relacionadas con la edad. Ciencia Latina Revista Científica Multidisciplinar, 7(3), 2343-2361. https://doi.org/10.37811/cl_rcm.v7i3.6353
Sección
Artículos