Carbón activado a partir de residuos de cáñamo modificado químicamente para remover azul de metileno

Palabras clave: azul de metileno, adsorción, carbón activado, ácido fosfórico

Resumen

El azul de metileno es un colorante que provoca efectos nocivos sobre la salud humana, por lo que el tratamiento en los efluentes contaminados por este colorante debe ser atendido. En la presente investigación se evaluó la capacidad de adsorción del carbón activado (CC) y carbón activado modificado con H3PO4 (CAC) a partir de los residuos del cáñamo para la remoción de azul de metileno en soluciones acuosas. Para la preparación de los carbones activados se empleó un horno tubular tipo mufla horizontal, cuyas condiciones de operación fueron 450 ºC, 1 hora, flujo de N2 de 50 mL.min-1 y velocidad de calentamiento de 5 a 10 ºC/min, las lecturas de azul de metileno se lo realizó a  = 664 nm. Los resultados arrojaron que el pH óptimo para la adsorción fue de 7 y 3 para los materiales CAC y CC, respectivamente; así mismo, se obtuvo una Qmax de 486,828 mg.g-1 y 142,384 mg.g-1 para CAC y CC, respectivamente. Se concluyó que el mejor material fue el CAC, en la que al usar el carbón activado modificado con el H3PO4, probablemente se dio debido al incremento del volumen de los poros y gran área superficial.

Descargas

La descarga de datos todavía no está disponible.

Citas

Agboola, O. D., & Benson, N. U. (2021). Physisorption and Chemisorption Mechanisms In fl uencing Micro ( Nano ) Plastics-Organic Chemical Contaminants Interactions : A Review. 9(May), 1–27. https://doi.org/10.3389/fenvs.2021.678574

Al-ghouti, M. A., & Da, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models : A review. 393(February).

Alver, E., Metin, A. Ü., & Brouers, F. (2020). Methylene blue adsorption on magnetic alginate/rice husk bio-composite. International Journal of Biological Macromolecules, 154, 104–113. https://doi.org/10.1016/j.ijbiomac.2020.02.330

Asquer, C., Melis, E., Scano, E. A., & Carboni, G. (2019). Opportunities for Green Energy through emerging crops: Biogas valorization of cannabis sativa l. residues. Climate, 7(12). https://doi.org/10.3390/cli7120142

Balajii, M., & Niju, S. (2019). Biochar ‑ derived heterogeneous catalysts for biodiesel production. Environmental Chemistry Letters, 17(4), 1447–1469. https://doi.org/10.1007/s10311-019-00885-x

Bedin, K. C., Martins, A. C., Cazetta, A. L., Pezoti, O., & Almeida, V. C. (2016). KOH-activated carbon prepared from sucrose spherical carbon : Adsorption equilibrium , kinetic and thermodynamic studies for Methylene Blue removal. 286, 476–484.

Belkhiri, L., Bollinger, J., Bouzaza, A., & Assadi, A. (2018). Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin : Kinetic and equilibrium studies. 153(November 2017), 38–45.

Buthelezi, S. P., Olaniran, A. O., & Pillay, B. (2012). Textile Dye Removal from Wastewater Effluents Using Bioflocculants Produced by Indigenous Bacterial Isolates. 14260–14274. https://doi.org/10.3390/molecules171214260

Djilani, C., Zaghdoudi, R., Djazi, F., & Bouchekima, B. (2015). Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. 53, 112–121.

Faur-brasquet, C., & Cloirec, P. Le. (2003). Adsorption of dyes onto acti v ated carbon cloths : approach of adsorption mechanisms and coupling of ACC with ultrafiltration to treat coloured wastewaters. 31, 3–11.

Foroutan, R., Mohammadi, R., Farjadfard, S., Esmaeili, H., Saberi, M., & Sahebi, S. (2019). Characteristics and performance of Cd , Ni , and Pb bio-adsorption using Callinectes sapidus biomass : real wastewater treatment. 6336–6347.

Hassan, A. F., El-naggar, G. A., Esmail, G., & Shaltout, W. A. (2023). Applied Surface Science Advances Efficient adsorption of methylene blue on novel triple-nanocomposites of potassium Kappa-carrageenan , calcium alginate and nanohydroxyapatite obtained from sea scallop shells. 13(February).

Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., & Ali, I. (2020). Methods for preparation and activation of activated carbon : a review. Environmental Chemistry Letters, 18(2), 393–415. https://doi.org/10.1007/s10311-019-00955-0

Heidarinejad, Z., Rahmanian, O., Fazlzadeh, M., & Heidari, M. (2018). Enhancement of methylene blue adsorption onto activated carbon prepared from Date Press Cake by low frequency ultrasound. 264, 591–599.

Jawad, A. H., Ramlah, A. R., Khudzir, I., & Sabar, S. (2017). High surface area mesoporous activated carbon developed from coconut leaf by chemical activation with H3PO4 for adsorption of methylene blue. Desalination And Water Treatment, 74, 326–335.

Kuang, Y., Zhang, X., & Zhou, S. (2020). Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification. 1–19.

Lapo, B., Demey, H., Carchi, T., & Sastre, A. M. (2019). Antimony removal fromwater by a chitosan-iron(III)[ChiFer(III)] biocomposite. Polymers, 11(2), 1–14. https://doi.org/10.3390/polym11020351

Mbarki, F., Selmi, T., Kesraoui, A., & Seffen, M. (2022). Low-cost activated carbon preparation from Corn stigmata fibers chemically activated using H 3 PO 4 , ZnCl 2 and KOH : Study of methylene blue adsorption , stochastic isotherm and fractal kinetic. 178(January).

Medhat, A., El-maghrabi, H. H., Abdelghany, A., Abdel, N. M., Raynaud, P., Moustafa, Y. M., Elsayed, M. A., & Nada, A. A. (2021). Applied Surface Science Advances Efficiently activated carbons from corn cob for methylene blue adsorption. 3(December 2020).

Mittal, H., & Sinha, S. (2016). A study on the adsorption of methylene blue onto gum ghatti / TiO 2 nanoparticles-based hydrogel nanocomposite. 88, 66–80.

Moreno, A., & Hormaza, A. (2015). Equilibrio , termodinámica y modelos cinéticos en la adsorción de Rojo 40 sobre tuza de maíz Equilibrium , thermodynamic and kinetic models for the adsorption of red 40 onto corn cob. 14(26), 105–120.

Ngulube, T., Ray, J., Masindi, V., & Maity, A. (2017). An update on synthetic dyes adsorption onto clay based minerals : A state-of-art review. 191.

P, Z. P., Qco, I., C, J. J., & Inf, M. (2019). Equilibrio , cinética y termodinámica de la adsorción del colorante DB-86 sobre carbón activado de la cáscara de yuca. 24(2), 7231–7238.

Pathania, D., Sharma, S., & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 10, S1445–S1451. https://doi.org/10.1016/j.arabjc.2013.04.021

Qu, J., Wang, Y., Tian, X., Jiang, Z., Deng, F., Tao, Y., & Jiang, Q. (2021). KOH-activated porous biochar with high speci fi c surface area for adsorptive removal of chromium ( VI ) and naphthalene from water : A ff ecting factors , mechanisms and reusability exploration. Hazardous Materials, 401(May 2020).

R.A. Canales-Flores, F. P.-G. (2020). Taguchi optimization for production of activated carbon from phosphoric acid impregnated agricultural waste by microwave heating for the removal of methylene blue. 109(July).

Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents : A review. 177, 70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047

Rao, M. M., Ramana, D. K., Seshaiah, K., Wang, M. C., & Chien, S. W. C. (2009). Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls. 166, 1006–1013. https://doi.org/10.1016/j.jhazmat.2008.12.002

Rashid, R., Shafiq, I., Akhter, P., Iqbal, M. J., & Hussain, M. (2021). A state-of-the-art review on wastewater treatment techniques : the effectiveness of adsorption method. 9050–9066.

Schlumberger, C., & Thommes, M. (2021). Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury Porosimetry — A Tutorial Review. 2002181. https://doi.org/10.1002/admi.202002181

Shaltout, W. A., El, G. A., Esmail, N. G., & Hassan, A. F. (2022). Synthesis and characterization of ferric @ nanocellulose / nanohydroxyapatite bio ‑ composite based on sea scallop shells and cotton stalks : adsorption of Safranin ‑ O dye. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-022-02753-1

Siong, W., Ying, J., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., Ho, S., & Loke, P. (2021). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 296, 126589. https://doi.org/10.1016/j.jclepro.2021.126589

Ugwu, E. I., & Agunwamba, J. C. (2020). A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater. Environmental Monitoring and Assessment, 192(4). https://doi.org/10.1007/s10661-020-8162-0

Xue, H., Wang, X., Xu, Q., Dhaouadi, F., Sellaoui, L., Seliem, M. K., Ben, A., Belmabrouk, H., Bajahzar, A., Bonilla-petriciolet, A., Li, Z., & Li, Q. (2022). Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass : A comparative study by experimental and advanced modeling analysis. 430(August 2021).

Publicado
2023-08-09
Cómo citar
Carchi Tandazo , T., Yánez Romero, M. E., Beltrán Balarezo, C., Elizalde Reyes, E., & Vega Loaiza, A. (2023). Carbón activado a partir de residuos de cáñamo modificado químicamente para remover azul de metileno. Ciencia Latina Revista Científica Multidisciplinar, 7(4), 2536-2552. https://doi.org/10.37811/cl_rcm.v7i4.7124
Sección
Artículos

Artículos más leídos del mismo autor/a