Biorremediación en Aguas Residuales Acuícolas: Una Revisión

Palabras clave: bacteria, biorremediación, efluente, microalgas, tratamiento

Resumen

A pesar de los altos rendimientos, los sistemas de producción acuícola intensivo han tenido un impacto negativo en el medio ambiente, debido al uso incontrolado de alimento y la producción masiva de residuos que se liberan sin previo tratamiento, lo cual conduce al deterioro de la calidad de los cuerpos de agua y eutroficación. La biorremediación es una técnica de tratamiento de las aguas residuales que es conocida por ser amigable con el medio ambiente, eficiente y rentable para mejorar la calidad de los residuos que se generan. Existen diferentes agentes biorremediadores que se han evaluado en los últimos años en las aguas residuales acuícolas. El objetivo del presente artículo es revisar y comparar las diferentes técnicas de biorremediación que se están llevando a cabo para el tratamiento de las aguas residuales producto de la acuicultura, y de esta manera abarcar las limitaciones, alcances y aplicabilidad. Diferentes fuentes de información fueron consideradas para esta revisión, que incluye tesis universitarias, documentos gubernamentales y artículos científicos en idioma español e inglés de revistas científicas indexadas. El alcance de este artículo se extiende para discutir los diversos tipos de biorremediación, sus aplicaciones e inconvenientes en el contexto del tratamiento de aguas residuales de la producción acuícola. Existe un gran potencial de las diferentes técnicas de biorremediación para poderlas aterrizar al contexto regional y así mismo se evidencia los escasos estudios en cuanto a la biorremediación de otros compuestos originados en la industria piscícola como hormonas y antibióticos.

Descargas

La descarga de datos todavía no está disponible.

Citas

AKAO, P.K.; SINGH, B.; KAUR, P.; SOR, A.; AVNI, A.; DHIR, A.; VERMA, S.; KAPOOR, S.; GUPTA-PHUTELA, U.; SATPUTE, S.; SHARMA, S.; AVISAR, D.; SINGH-SANDHA, K.; MAMANE, H. 2021. Coupled microalgal–bacterial biofilm for enhanced wastewater treatment without energy investment. Journal of Water Process Engineering, 41, 102029. ISSN 2214-7144. https://doi.org/10.1016/j.jwpe.2021.102029.

ANDREOTTI, V.; CHINDRIS, A.; BRUNDU, G.; VALLAINC, D.; FRANCAVILLA, M.; GARCÍA, J. 2017. Bioremediation of aquaculture wastewater from Mugil cephalus (Linnaeus, 1758) with different microalgae species. Chemistry and Ecology, 33(8), 750-761, https://doi.org/10.1080/02757540.2017.1378351.

ALI, N.; MOHAMMAD, A.W.; JUSOH, A.; HASAN, M.R.; GHAZALI, N.; KAMARUZAMAN, K. 2005. Treatment of aquaculture wastewater using ultra-low pressure asymmetric polyethersulfone (PES) membrane. Desalination 185, 317-326. https://doi.org/10.1016/j.desal.2005.03.084.

AQUILINO, F.; PARADISO, A.; TRANI, R.; LONGO, C.; PIERRI, C.; CORRIERO, G.; CONCETTA DE PINTO, M. 2020. Chaetomorpha linum in the bioremediation of aquaculture wastewater: Optimization of nutrient removal efficiency at the laboratory scale. Aquaculture, 523, 735133. ISSN 0044-8486. https://doi.org/10.1016/j.aquaculture.2020.735133.

BOTERO-AGUIRRE, M.; OCHOA S, J.; JIMÉNEZ, H. A.; URIBE, V.J.; BOTERO, M. 2006. Disminución de la reproducción, el crecimiento y la sobrevivencia de peces, debido a una alteración en la cantidad y calidad del agua: reporte de caso. Revista Colombiana de Ciencias Pecuarias, 19 (2), 228-232. ISSN 2256-2958.

CAMARGO, J.A.; ALONSO, A.; SALAMANCA, A. 2005. Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere, 58 (9), 1255-1267. ISSN 0045-6535. https://doi.org/10.1016/j.chemosphere.2004.10.044.

CARDONA, J.; GARCÍA, L.A. 2008. Evaluación del efecto de los microorganismos eficaces (EM) sobre la calidad de un agua residual doméstica (Tesis de pregrado). Pontificia Universidad Javeriana, Bogotá, Colombia.

CHÁVEZ-CROOKER, P.; OBREQUE-CONTRERAS, J. 2010. Bioremediation of aquaculture wastes. Curr Opin Biotechnol, 21(3), 313-7. doi: 10.1016/j.copbio.2010.04.001.

CHAUX-F, G.; CAICEDO-B, J. R.; FERNÁNDEZ-M, J.E. 2013. Tratamiento de efluentes piscícolas (tilapia roja) en lagunas con Azolla pinnata. Biotecnología en el Sector Agropecuario y Agroindustrial, 11(2), 46-56. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612013000200006&lng=en&tlng=es.

CLAUDET, J.; FRASCHETTI, S. 2010. Human-driven impacts on marine habitats: A regional meta-analysis in the Mediterranean Sea. Biological Conservation,143 (9), 2195-2206. ISSN 0006-3207, https://doi.org/10.1016/j.biocon.2010.06.004.

COPETE-PERTUZ, L.; PLÁCIDO, J.; SERNA-GALVIS, E.; TORRES-PALMA, R.; MORA, A. 2018. Elimination of Isoxazolyl-Penicillins antibiotics in waters by the ligninolytic native Colombian strain Leptosphaerulina sp. considerations on biodegradation process and antimicrobial activity removal. Science of The Total Environment, 630, 1195-1204. http://dx.doi.org/10.1016/j.scitotenv.2018.02.244.

CRIPPS, S.J.; BERGHEIM, A. 2000. Solids management and removal for intensive land-based aquaculture production systems. Aquacultural Engineering, 22(1–2), 33-56. ISSN 0144-8609, https://doi.org/10.1016/S0144-8609(00)00031-5.

DASH, P.; TANDEL, R.; BHAT, R.; MALLIK, S.; PANDEY, N.; SINGH, A.; SARMA, D. 2018. The addition of probiotic bacteria to microbial floc: Water quality, growth, non-specific immune response and disease resistance of Cyprinus carpio in mid-Himalayan altitude. Aquaculture, 495, 961–969. https://doi.org/10.1016/j.aquaculture.2018.06.056.

DONG, D.; SUN, H.; QI, Z.; LIU, X. 2021. Improving microbial bioremediation efficiency of intensive aquacultural wastewater based on bacterial pollutant metabolism kinetics análisis. Chemosphere, 265, 129151. ISSN 0045-6535. https://doi.org/10.1016/j.chemosphere.2020.129151.

DOLAN, E.; MURPHY, N.; O’HEHIR, M. 2013. Factors influencing optimal micro-screen drum filter selection for recirculating aquaculture systems. Aquacultural Engineering, 56, 42-50. ISSN 0144-8609, https://doi.org/10.1016/j.aquaeng.2013.04.005.

EBELING, J.M.; TIMMONS, M.B.; BISOGNI, J.J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture. 257 (1–4), 346–358.

GÓMEZ GARCÍA, F. S.; GUZMÁN LENIS, A. R.; OLARTE BLANDÓN, O. J. 2017. Estabilización de tanques de acuicultura para la producción artesanal y autosostenible de peces ornamentales, en el municipio de Acacías, Meta. Documentos de Trabajo ECAPMA, 0(2). https://doi.org/10.22490/ECAPMA.1817.

GÓMEZ-PARDO, N.Y.; RICO-TORRES, F.R. 2017. Uso del Chrysopogon zizanioides como alternativa natural para disminuir la carga contaminante en efluentes provenientes de la actividad piscícola en la colonia agrícola de Acacias –Meta. Trabajo de grado para optar al título en Ingeniería Ambiental. Universidad Nacional Abierta y a Distancia (UNAD), Colombia.

GONDWE, M.J.; GUILDFORD, S.J.; HECKY, R.E. 2012. Tracing the flux of aquaculture derived organic wastes in the southeast arm of Lake Malawi using carbon and nitrogen stable isotopes. Aquaculture, 350-353, 8-18. https://doi.org/10.1016/j.aquaculture.2012.04.030.

GORITO, A.M.; RIBEIRO, A.R.; ROCHA-GOMES, C.; ALMEIDA, C.M.R.; SILVA, A.M.T. 2018. Constructed wetland microcosms for the removal of organic micropollutants from freshwater aquaculture effluents. Science of The Total Environment, 644, 1171-1180. ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2018.06.371.

GUIMARÃES-CARDOSO, L.; HARTWIG-DUARTE, J.; BOMFIM-ANDRADE, B.; FRANÇA- LEMOS, P.V.; VIEIRA- COSTA, J.A.; DRUZIAN, J.I.; CHINALIA, F.A. 2020. Spirulina sp. LEB 18 cultivation in outdoor pilot scale using aquaculture wastewater: High biomass, carotenoid, lipid and carbohydrate production. Aquaculture, 525, 735272. ISSN 0044-8486. https://doi.org/10.1016/j.aquaculture.2020.735272.

HAN, P.; LU, Q.; FAN, L.; ZHOU, W. 2019. A Review on the Use of Microalgae for Sustainable Aquaculture. Applied Sciences, 9(11), 2377. https://doi.org/10.3390/app9112377.

HAN, W.; MAO, Y.; WEI, Y.; SHANG, P.; ZHOU, X. 2020. Bioremediation of Aquaculture Wastewater with Algal-Bacterial Biofilm Combined with the Production of Selenium Rich Biofertilizer. Water, 12, 2071.

HLORDZI, V.; KUEBUTORNYE, F.K.A.; AFRIYIE, G.; DELWIN ABARIKE, E.; LU, Y.; CHI, S.; ANOKYEWAA, M.A. 2020. The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18, 100503. ISSN 2352-5134. https://doi.org/10.1016/j.aqrep.2020.100503.

HU, Z.; WOO LEE, Y.; CHANDRAN, K.; KIM, S.; SHARMA, K.; COELHO BROTTO, A.; KUMAR KHANAL, S. 2013. Nitrogen transformations in intensive aquaculture system and its implication to climate change through nitrous oxide emisión. Bioresource Technology, 130, 314-320. ISSN 0960-8524. https://doi.org/10.1016/j.biortech.2012.12.033.

HUANG, Y.; CIAIS, P.; GOLL, D. S.; SARDANS, J.; PEÑUELAS, J.; CRESTO-ALEINA, F.; ZHANG, H. 2020. The shift of phosphorus transfers in global fisheries and aquaculture. Nature Communications, 11(1), 355. https://doi.org/10.1038/s41467-019-14242-7.

HUI, A.; HIZAR, N.H.; RONG, L.; AMIN, M.; HASSIN, N.; MOHD.; RASAT, S.M.; AHMAD, M.I.; RAZAB, M.; HAKIMIN, N.; & ABDULLAH, N. 2017. Phytoremediation of Aquaculture Wastewater by Colocasia esculenta, Pistia stratiotes, and Limnocharis flava. Journal of Tropical Resources and Sustainable Science, 5, 93-97. http://www.jtrss.org/.../5-2-93-97.pdf.

HUO, Y.; WU, H.; CHAI, Z.; XU, S.; HAN, F.; DONG, L.; HE, P. 2012. Bioremediation efficiency of Gracilaria verrucosa for an integrated multi-trophic aquaculture system with Pseudosciaena crocea in Xiangshan harbor, China. Aquaculture, 326–329, 99-105. ISSN 0044-8486. https://doi.org/10.1016/j.aquaculture.2011.11.002.

JAHAN, P.; WATANABE, T.; SATOH, S.; KIRON, V. 2003. Reduction in elemental waste loading from commercial carp feeds by manipulating the dietary phosphorus levels. Fisheries science, 69 (1), 58-65. ISSN 0919-9268, https://doi.org/10.1046/j.1444-2906.2003.00588.

JASMIN, M.Y.; SYUKRI, F.; KAMARUDIN, M.S.; KARIM, M. 2020. Potential of bioremediation in treating aquaculture sludge: Review article. Aquaculture, 519, 734905. ISSN 0044-8486. https://doi.org/10.1016/j.aquaculture.2019.734905.

JOHN, E.M.; KRISHNAPRIYA, K.; SANKAR, T.V. 2020. Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium. Aquaculture, 526, 735390. ISSN 0044-8486. https://doi.org/10.1016/j.aquaculture.2020.735390.

JU, B.; CHEN, L.; XING, R.; JIANG, A. 2015. A new integrated multi-trophic aquaculture system consisting of Styela clava, microalgae, and Stichopus japonicus. Aquaculture International, 23(2), 471-497. https://doi.org/10.1007/s10499-014-9829-8.

KALOUDAS, D.; PAVLOVA, N.; PENCHOVSKY, R. 2021. Phycoremediation of wastewater by microalgae: a review. Environ Chem Lett, 19, 2905–2920. https://doi.org/10.1007/s10311-021-01203-0.

KANG, Y.H.; KIM, S.; CHOI, S.K.; LEE, H.J.; CHUNG, I.K.; PARK, S.R. 2021. A comparison of the bioremediation potential of five seaweed species in an integrated fish-seaweed aquaculture system: implication for a multi-species seaweed culture. Rev. Aquacult., 13, 353-364. https://doi.org/10.1111/raq.12478.

KHATOON, H.; PENZ-PENZ, K.; BANERJEE, S.; REDWANUR-RAHMAN, M.; MAHMUD-MINHAZ, T.; ISLAM, Z.; ARA-MUKTA, F.; NAYMA, Z.; SULTANA, R.; ISLAM-AMIRA, K. 2021. Immobilized Tetraselmis sp. for reducing nitrogenous and phosphorous compounds from aquaculture wastewater. Bioresource Technology, 338, 125529. ISSN 0960-8524. https://doi.org/10.1016/j.biortech.2021.125529.

KHODAMI, S.; ATTARAN-FARIMAN, G.; GHASEMZADEH, J.; MORTAZAVI, M.S. 2011. Comparison of different nitrogen compounds in three different environments of the Gwatar shrimp farms complex in the Gwatar Gulf region (Baluchestan-Iran). Iranian Journal of Fisheries Sciences, 10 (4), 663-677. URL: http://jifro.ir/article-1-275-en.html.

KIM, J.H.; KANG, Y.J.; KIM, K.I.; KIM, S.K.; KIM, J.H. 2019. Toxic effects of nitrogenous compounds (ammonia, nitrite, and nitrate) on acute toxicity and antioxidant responses of juvenile olive flounder, Paralichthys olivaceus. Environ Toxicol Pharmacol, 67,73-78. doi: 10.1016/j.etap.2019.02.001. Epub 2019 Feb 2. PMID: 30763818.

KURADE, M.B.; HA, YOON-HEE.; XIONG, JIU-QIANG.; GOVINDWAR, S.P.; JANG, M.; JEON, BYONG-HUN. 2021. Phytoremediation as a green biotechnology tool for emerging environmental pollution: A step forward towards sustainable rehabilitation of the environment. Chemical Engineering Journal, 415, 129040. ISSN 1385-8947. https://doi.org/10.1016/j.cej.2021.129040

LALITHA, N.; KUMAR- PATIL, P.; RAJESH, R.; MURALIDHAR, M. 2019. Usage of Pleurotus ostreatus for Degradation of Oxytetracycline in Varying Water Salinities in Brackishwater Aquaculture System. Journal of Coastal Research, 86(1), 138-141. https://doi.org/10.2112/SI86-021.1

LANANAN, F.; ABDUL, S.H.; SAKINAH, W.N.; ALI, N.; KHATOON, H.; JUSOH, A.; ENDUT, A. 2014. Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp.). International Biodeterioration & Biodegradation, 95, 127-134. https://doi.org/10.1016/j.ibiod.2014.06.013.

LEO, C.P.; YAHYA, M.Z.; KAMAL, S.N.M.; AHMAD, A.L.; MOHAMMAD, A.W. 2013. Potential of nanofiltration and low pressure reverse osmosis in the removal of phosphorus for aquaculture. Water Science and Technology, 67 (4), 831–837. https://doi.org/10.2166/wst.2012.625.

LI, M.; CALLIER, M.D.; BLANCHETON, J.P.; GALÈS, A.; NAHON, S.; TRIPLET, S.; GEOFFROY, T.; MENNITI, C.; FOUILLAND, E.; ROQUE D'ORBCASTEL, E. 2019. Bioremediation of fishpond effluent and production of microalgae for an oyster farm in an innovative recirculating integrated multi-trophic aquaculture system. Aquaculture, 504, 314-325. ISSN 0044-8486. https://doi.org/10.1016/j.aquaculture.2019.02.013.

LIU, C.C.K.; XIA, W.; PARK, J.W. 2007. A wind-driven reverse osmosis system for aquaculture wastewater reuse and nutrient recovery. Desalination, 202(1–3), 24-30. ISSN 0011-9164. https://doi.org/10.1016/j.desal.2005.12.034.

LIU, T.; HE, X.; JIA, G.; XU, J.; QUAN, X.; YOU, S. 2020. Simultaneous nitrification and denitrification process using novel surface-modified suspended carriers for the treatment of real domestic wastewater. Chemosphere, 247, 125831. ISSN 0045-6535. https://doi.org/10.1016/j.chemosphere.2020.125831.

LOPES GALASSO, H.; LEFEBVRE, S.; ALIAUME, C.; SADOUL, B.; CALLIER, M.D. 2020. Using the Dynamic Energy Budget theory to evaluate the bioremediation potential of the polychaete Hediste diversicolor in an integrated multi-trophic aquaculture system. Ecological Modelling, 437, 109296. ISSN 0304-3800. https://doi.org/10.1016/j.ecolmodel.2020.109296.

LUNA, M.A. 2011. Efluente Piscícolas: Características Contaminantes, Impactos y Perspectivas de Tratamiento. Journal de Ciencia e Ingeniería, 3(1), 12-15.

MAIGUAL E, Y.; SÁNCHEZ O, I.; MATSUMOTO, T. 2013. Desempeño de tanques decantadores de sólidos en un sistema de recirculación para producción de tilapia. Revista MVZ Córdoba, 18(2), 3492-3500. https://doi.org/10.21897/rmvz.173.

MARTINS, C.I.M.; EDING, E.H.; VERDEGEM, M.C.J.; HEINSBROEK, L.T.N.; SCHNEIDER, O.; BLANCHETON, J.P.; ROQUE D’ORBCASTEL, E.; VERRETH, J.A.J. 2010. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacultural Engineering, 43(3), 83-93. ISSN 0144-8609, https://doi.org/10.1016/j.aquaeng.2010.09.002.

MARTINEZ-PORCHAS, M.; MARTINEZ-CORDOVA, L. R. 2012. World Aquaculture: Environmental Impacts and Troubleshooting Alternatives. The Scientific World Journal, 389623. https://doi.org/10.1100/2012/389623.

MAWI, S.; KRISHNAN, S.; MD DIN, M.F.; ARUMUGAM, N.; CHELLIAPAN, S. 2020. Bioremediation potential of macroalgae Gracilaria edulis and Gracilaria changii co-cultured with shrimp wastewater in an outdoor water recirculation system. Environmental Technology & Innovation, 17, 100571. ISSN 2352-1864. https://doi.org/10.1016/j.eti.2019.100571.

MILHAZES-CUNHA, H.; Y OTERO, A. 2017. Valorisation of aquaculture effluents with microalgae: The Integrated Multi-Trophic Aquaculture concept. Algal Research, 24 (Part B), 416-424. ISSN 2211-9264. https://doi.org/10.1016/j.algal.2016.12.011.

MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL (MINAGRICULTURA). 2019. Estrategia de Política para el Sector de Pesca y Acuicultura. Colombia, 1-18.

MOHAMAD, K. A.; MOHD, S. Y.; SARAH, R. S.; MOHD, H. Z.; RASYIDAH, A. 2017. Total nitrogen and total phosphorus removal from brackish aquaculture wastewater using effective microorganism. AIP Conference Proceedings, 1885(1), 020127. https://doi.org/10.1063/1.5002321.

MOHD-NIZAM, N.U.; MOHD-HANAFIAH, M.; MOHD-NOOR, I.; ABD-KARIM, H.I. 2020. Efficiency of Five Selected Aquatic Plants in Phytoremediation of Aquaculture Wastewater. Applied Sciences, 10(8), 2712. https://doi.org/10.3390/app10082712.

MUSYOKA, S.N. 2016. Concept of microbial bioremediation in aquaculture wastes; Review. International Journal of Advanced Scientific and Technical Research, 5(6), 1-10. http://rspublication.com/ijst/2016/oct16/2.pdf.

MUTHUKRISHNAN, S.; SABARATNAM, V.; GEOK-YUAN, A.T.; VING, C.C. 2015. Identification of Indigenous Bacteria Isolated from Shrimp Aquaculture Wastewater with Bioremediation Application: Total Ammoniacal Nitrogen (TAN) and Nitrite Removal. Sains Malaysiana, 44(8), 1103–1110. DOI: 10.17576 / jsm-2015-4408-04.

NADERI SAMANI, M.; JAFARYAN, H.; GHOLIPOUR, H.; HARSIJ, M.; FARHANGI, M. 2016. Effect of different concentration of profitable Bacillus on bioremediation of common carp (Cyprinus carpio) pond discharge. Iranian journal Aquatic Animal Health, 2 (2), 44-54. URL: http://ijaah.ir/article-1-122-en.html.

NAKPHET, S.; RITCHIE, R.J. & KIRIRATNIKOM, S. 2017. Aquatic plants for bioremediation in red hybrid tilapia (Oreochromis niloticus × Oreochromis mossambicus) recirculating aquaculture. Aquacult Int, 25, 619–633. https://doi.org/10.1007/s10499-016-0060-7.

NEDERLOF, M.A.J.; FANG, J.; DAHLGREN, T.G.; RASTRICK, S.P.S.; SMAAL, A.C.; STRAND, O.; SVEIER, H.; VERDEGEM, M.C.J.; JANSEN, H.M. 2020. Application of polychaetes in (de)coupled integrated aquaculture: an approach for fish waste bioremediation. Aquacult Environ Interact, 12, 385-399. https://doi.org/10.3354/aei00371.

NI, Z.; WU, X.; LI, L.; LV, Z.; ZHANG, Z.; HAO, A.; ISERI, Y.; KUBA, T.; ZHANG, X.; WU, WEI-MIN.; LI, C. 2018. Pollution control and in situ bioremediation for lake aquaculture using an ecological dam. Journal of Cleaner Production, 172, 2256-2265. ISSN 0959-6526. https://doi.org/10.1016/j.jclepro.2017.11.185.

PRABU, E.; VIVEK SANTHIYA, A.A. 2016. An overview of bioremediation towards aquaculture. Journal of Aquaculture in the Tropics, 31(3-4),155-164.

QIN, G.; LIU, C.C.K.; RICHMAN, N.H.; MONCUR, J.E.T. 2005. Aquaculture wastewater treatment and reuse by wind-driven reverse osmosis membrane technology: a pilot study on Coconut Island, Hawaii. Aquacultural Engineering, 32(3–4), 365-378. ISSN 0144-8609, https://doi.org/10.1016/j.aquaeng.2004.09.002.

RABALAIS, N.N. 2002. Nitrogen in aquatic ecosystems. Ambio: A Journal of the Human Environment, 31(2), 102–112. https://doi.org/10.1579/0044-7447-31.2.102.

RAMOS, R.; NAVARRO, A. 2019. Tratamiento de efluentes del cultivo de Seriola lalandi por sedimentación, filtración y absorción en diferentes tiempos de retención hidráulica. Revista de biología marina y oceanografía, 54(3), 297-307. https://dx.doi.org/10.22370/rbmo.2019.54.3.

RAMOS, ROBERTO, PIZARRO, ROBERTO. 2018. Crecimiento y capacidad de biorremediación de Chlorella vulgaris (Trebouxiophycea, Chlorophyta) cultivada en aguas residuales generadas en el cultivo del pez dorado Seriola lalandi (Perciformes: Carangidae). Revista de biología marina y oceanografía, 53(1), 75-86. https://dx.doi.org/10.4067/S0718-19572018000100075.

RASSAMEE, V.; SATTAYATEWA, C.; PAGILLA, K.; CHANDRAN, K. 2011. Effect of oxic and anoxic conditions on nitrous oxide emissions from nitrification and denitrification processes. Biotechnology and Bioengineering, 108(9), 2036–2045. doi:10.1002/bit.23147.

ROBLES ‐ PORCHAS, G.R.; GOLLAS ‐ GALVÁN, T.; MARTÍNEZ ‐ PORCHAS, M.; MARTÍNEZ ‐ CORDOVA, L.R.; MIRANDA ‐ BAEZA, A.; VARGAS ‐ ALBORES, F. 2020. The nitrification process for nitrogen removal in biofloc system aquaculture. Reviews in aquaculture, 12(4), 2228-2249. https://doi.org/10.1111/raq.12431.

ROCHA, G. S.; PARRISH, C. C.; LOMBARDI, A. T.; DA GRAÇA GAMA MELÃO, M. 2018. Biochemical and physiological responses of Selenastrum gracile (Chlorophyceae) acclimated to different phosphorus concentrations. Journal of Applied Phycology, 30(4), 2167-2177. https://doi.org/10.1007/s10811-018-1418-1

SALAZAR CANO, R. 2004. Tratamiento de aguas residuales en la acuicultura. Revista electrónica de ingeniería en producción agrícola, 1(1), 1-48.

SHAH, A.; SHAH, M. 2020. Characterisation and bioremediation of wastewater: A review exploring bioremediation as a sustainable technique for pharmaceutical wastewater. Groundwater for Sustainable Development, 11, 100383. ISSN 2352-801X. https://doi.org/10.1016/j.gsd.2020.100383.

SHARRER, M.J.; RISHEL, K.; SUMMERFELT, S. 2009. Evaluation of geotextile filtration applying coagulant and flocculant amendments for aquaculture biosolids dewatering and phosphorus removal. Aquacultural Engineering, 40(1), 1-10. https://doi.org/10.1016/j.aquaeng.2008.10.001.

SIRAKOV, I.N.; VELICHKOVA. K.N. 2014. Bioremediation of wastewater originate from aquaculture and biomass production from microalgae species - Nannochloropsis oculata and Tetraselmis chuii. Bulgarian Journal of Agricultural Science, 20 (1), 66-72.

SUGIURA, S.H. 2018. Phosphorus, Aquaculture, and the Environment. Reviews in Fisheries Science & Aquaculture, 26(4), 515-521, DOI: 10.1080/23308249.2018.1471040.

TRUE, B.; JOHNSON, W.; CHEN, S. 2004. Reducing phosphorus discharge from flow-through aquaculture: III: assessing high-rate filtration media for effluent solids and phosphorus removal, Aquacultural Engineering, 32(1), 161-170. ISSN 0144-8609, https://doi.org/10.1016/j.aquaeng.2004.08.004.

THULASI, D.; MURALIDHAR, M.; SARASWATHY, R. 2020. Efecto del sulfuro en camarón blanco del Pacífico Penaeus vannamei bajo diferentes niveles de oxígeno y pH. Aquaculture Research, 51, 2389 - 2399 . https://doi.org/10.1111/are.14582.

TUAN, L.C.; HUY, N.D.; NGOC, L.M.T.; LANH, D.T.M.; SON, T.M.; LOC, N.H. 2021. Nitrogen removal efficiency of some bacterial strains isolated from seawater in Thua Thien Hue. Advancements in. Life Science, 8(2), 184-189.

VEZZULLI, L.; MORENO, M.; MARIN, V.; PEZZATI, E.; BARTOLI, M.; FABIANO, M. 2008. Organic waste impact of capture-based Atlantic bluefin tuna aquaculture at an exposed site in the Mediterranean Sea. Estuar. Coast. Shelf Sci, 78(2), 369-384. https://doi.org/10.1016/j.ecss.2008.01.002.

VIEGAS, C.; GOUVEIA, L.; GONÇALVES, M. 2021. Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. Journal of Environmental Management, 286, 112187. ISSN 0301-4797. https://doi.org/10.1016/j.jenvman.2021.112187.

ZHAO, Y.G.; ZHENG, Y.; TIAN, W.; BAI, J.; FENG, G.; GUO, L.; GAO, M. 2016. Enrichment and immobilization of sulfide removal microbiota applied for environmental biological remediation of aquaculture área. Environmental Pollution, 214, 307-313. ISSN 0269-7491. https://doi.org/10.1016/j.envpol.2016.03.028.

ZHU, B.; CHEN, S.; ZHAO, C.; ZHONG, W.; ZENG, R.; YANG, S. 2019. Effects of Marichromatium gracile YL28 on the nitrogen management in the aquaculture pond water. Bioresour Technol, 292, 121917. doi: 10.1016/j.biortech.2019.121917.

ZOKAEIFAR, H.; BABAEI, N.; SAAD, C.R.; KAMARUDIN, M.S.; SIJAM, K., BALCAZAR, J.L. 2014. Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol, 36(1), 68-74. doi: 10.1016/j.fsi.2013.10.007.

Publicado
2023-09-20
Cómo citar
Alonso Fernández , A. M., Palacios Arrieta , D., & Guadalupe Martínez , N. (2023). Biorremediación en Aguas Residuales Acuícolas: Una Revisión. Ciencia Latina Revista Científica Multidisciplinar, 7(4), 8538-8568. https://doi.org/10.37811/cl_rcm.v7i4.7577
Sección
Artículos