Influencia Del Dióxido De Titanio En El Concreto Permeable Con Efecto Fotocatalizador
Resumen
El objetivo es determinar la influencia del dióxido de titanio en el concreto permeable con efecto fotocatalizador. La población fue de 63 probetas cilíndricas de 15 x 30 cm y 42 probetas de 9.5 x 15 cm de concreto; teniendo como muestra probetas con diseño convencional (sin adición de titanio), y por los diseños de mezcla utilizando dióxido de titanio, considerando el estado de dióxido de titanio y el porcentaje de este sobre el concreto. Se determinó que los especímenes con 1,5% de TiO2 en fase anatasa presentaron buenos índice de coeficiente de permeabilidad en relación de la muestra patrón, la mayor resistencia a la compresión se presenta en la muestra con 1.5% de TiO2 en fase rutilo, siendo seguidos por los especímenes con 5,5% de TiO2 en fase rutilo y 1.5% en la fase anatasa que también presentaron buenos índice de resistencia a la compresión; la mayor propiedad fotocatalíticas se presentaron en los especímenes con 1,5% de TiO2 en fase anatasa. Se concluyó: la dosificación de 1.5% en la fase anatasa es la más recomendable dado que muestra buen índice de permeabilidad, así como mejoras significativas en la resistencia a la compresión del concreto y en la propiedad fotocatalítica.
Descargas
Citas
Addamo, M., Augugliaro, V., Bellardita, M., Di Paola, A., Loddo, V., Palmisano, G., Palmisano, L., & Yurdakal, S. (2008). Environmentally Friendly Photocatalytic Oxidation of Aromatic Alcohol to Aldehyde in Aqueous Suspension of Brookite TiO2. Catalysis Letters, 126(1), 58-62. https://doi.org/10.1007/s10562-008-9596-0
Amagua Sangoquiza, J. A. (2021). Diseño de un pavimento asfáltico drenante basado en un material de protección ambiental de dióxido de titanio (TiO2), aplicado en el corredor vial de alto tráfico, sector El Trébol, cantón Quito. http://repositorio.espe.edu.ec/jspui/handle/21000/24119
Banerjee, S., Dionysiou, D. D., & Pillai, S. C. (2015). Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Applied Catalysis B: Environmental, 176-177, 396-428. https://doi.org/10.1016/j.apcatb.2015.03.058
Bellardita, M., Di Paola, A., Megna, B., & Palmisano, L. (2018). Determination of the crystallinity of TiO2 photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 367, 312-320. https://doi.org/10.1016/j.jphotochem.2018.08.042
Bogue, R. (2014). Smart materials: A review of capabilities and applications. Assembly Automation, 34(1), 16-22. https://doi.org/10.1108/AA-10-2013-094
Cassar, L., Beeldens, A., Pimpinelli, N., & Guerrini, G. L. (2007). Photocatalysis of cementitious materials. International RILEM Symposium on Photocatalysis, Environment and Construction Materials, 131-145.
Cassar, L., Pepe, C., Tognon, G., Guerrini, G. L., & Amadelli, R. (2003). White cement for architectural concrete, possessing photocatalytic properties.
Chen, J., & Poon, C. (2009). Photocatalytic construction and building materials: From fundamentals to applications. Building and Environment, 44(9), 1899-1906. https://doi.org/10.1016/j.buildenv.2009.01.002
Chen, S., & Cao, G. (2006). Study on the photocatalytic oxidation of NO2– ions using TiO2 beads as a photocatalyst. Desalination, 194(1), 127-134. https://doi.org/10.1016/j.desal.2005.11.006
Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews, 107(7), 2891-2959. https://doi.org/10.1021/cr0500535
Chung, D. D. L. (2000). Cement-matrix composites for smart structures. Smart Materials and Structures, 9(4), 389-401. https://doi.org/10.1088/0964-1726/9/4/302
Chung, D. D. L. (2002). Composites get smart. Materials Today, 5(1), 30-35. https://doi.org/10.1016/S1369-7021(02)05140-4
Di Paola, A., García-López, E., Marcì, G., & Palmisano, L. (2012). A survey of photocatalytic materials for environmental remediation. Journal of Hazardous Materials, 211-212, 3-29. https://doi.org/10.1016/j.jhazmat.2011.11.050
Etxeberria, M., Guo, M.-Z., Maury-Ramírez, A., & Poon, C. S. (2017). Influence of Dust and Oil Accumulation on Effectiveness of Photocatalytic Concrete Surfaces. Journal of Environmental Engineering, 143(9), 04017040. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001239
Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358), 37-38. https://doi.org/10.1038/238037a0
Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21. https://doi.org/10.1016/S1389-5567(00)00002-2
Hamidi, F., & Aslani, F. (2019a). Additive manufacturing of cementitious composites: Materials, methods, potentials, and challenges. Construction and Building Materials, 218, 582-609. https://doi.org/10.1016/j.conbuildmat.2019.05.140
Hamidi, F., & Aslani, F. (2019b). TiO2-based Photocatalytic Cementitious Composites: Materials, Properties, Influential Parameters, and Assessment Techniques. Nanomaterials, 9(10), 1444. https://doi.org/10.3390/nano9101444
Han, B., Li, Z., Zhang, L., Zeng, S., Yu, X., Han, B., & Ou, J. (2017). Reactive powder concrete reinforced with nano SiO2-coated TiO2. Construction and Building Materials, 148, 104-112. https://doi.org/10.1016/j.conbuildmat.2017.05.065
Hanus, M. J., & Harris, A. T. (2013). Nanotechnology innovations for the construction industry. Progress in Materials Science, 58(7), 1056-1102. https://doi.org/10.1016/j.pmatsci.2013.04.001
Haque, M. A., & Chen, B. (2019). Research progresses on magnesium phosphate cement: A review. Construction and Building Materials, 211, 885-898. https://doi.org/10.1016/j.conbuildmat.2019.03.304
Herrmann, J.-M. (2005). Heterogeneous photocatalysis: State of the art and present applications In honor of Pr. R.L. Burwell Jr. (1912–2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill). Topics in Catalysis, 34(1), 49-65. https://doi.org/10.1007/s11244-005-3788-2
Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. https://doi.org/10.1021/cr00033a004
Ibrahim, M. H., El-Naas, M. H., Benamor, A., Al-Sobhi, S. S., & Zhang, Z. (2019). Carbon Mineralization by Reaction with Steel-Making Waste: A Review. Processes, 7(2), 115. https://doi.org/10.3390/pr7020115
Jalvo, B., Faraldos, M., Bahamonde, A., & Rosal, R. (2017). Antimicrobial and antibiofilm efficacy of self-cleaning surfaces functionalized by TiO2 photocatalytic nanoparticles against Staphylococcus aureus and Pseudomonas putida. Journal of Hazardous Materials, 340, 160-170. https://doi.org/10.1016/j.jhazmat.2017.07.005
Jiang, S., Zhou, D., Zhang, L., Ouyang, J., Yu, X., Cui, X., & Han, B. (2018). Comparison of compressive strength and electrical resistivity of cementitious composites with different nano- and micro-fillers. Archives of Civil and Mechanical Engineering, 18(1), 60-68. https://doi.org/10.1016/j.acme.2017.05.010
Kabadi, C. (2020). Titanium Dioxide-Potential use in Permeable Pavement. International Journal of Engineering Research & Technology, 9(5). https://doi.org/10.17577/IJERTV9IS050173
Kawahara, T., Konishi, Y., Tada, H., Tohge, N., Nishii, J., & Ito, S. (2002). A patterned TiO(2)(anatase)/TiO(2)(rutile) bilayer-type photocatalyst: Effect of the anatase/rutile junction on the photocatalytic activity. Angewandte Chemie (International Ed. in English), 41(15), 2811-2813. https://doi.org/10.1002/1521-3773(20020802)41:15<2811::AID-ANIE2811>3.0.CO;2-#
Kurihara, R., & Maruyama, I. (2016). INFLUENCES OF NANO-TiO2 PARTICLES ON ALTERATION OF MICROSTRUCTURE OF HARDENED CEMENT. Proceedings of the Japan Concrete Institute, 38, 219-224.
Li, Z., Ding, S., Yu, X., Han, B., & Ou, J. (2018). Multifunctional cementitious composites modified with nano titanium dioxide: A review. Composites Part A: Applied Science and Manufacturing, 111, 115-137. https://doi.org/10.1016/j.compositesa.2018.05.019
Li, Z., Han, B., Yu, X., Dong, S., Zhang, L., Dong, X., & Ou, J. (2017). Effect of nano-titanium dioxide on mechanical and electrical properties and microstructure of reactive powder concrete. Materials Research Express, 4(9), 095008. https://doi.org/10.1088/2053-1591/aa87db
Loh, K., Gaylarde, C. C., & Shirakawa, M. A. (2018). Photocatalytic activity of ZnO and TiO2 ‘nanoparticles’ for use in cement mixes. Construction and Building Materials, 167, 853-859. https://doi.org/10.1016/j.conbuildmat.2018.02.103
Macphee, D. E., & Folli, A. (2016). Photocatalytic concretes—The interface between photocatalysis and cement chemistry. Cement and Concrete Research, 85, 48-54. https://doi.org/10.1016/j.cemconres.2016.03.007
Nath, R. K., Zain, M. F. M., & Jamil, M. (2016). An environment-friendly solution for indoor air purification by using renewable photocatalysts in concrete: A review. Renewable and Sustainable Energy Reviews, 62, 1184-1194. https://doi.org/10.1016/j.rser.2016.05.018
Nath, R., .Zain, M., & Kadhum, A. (2012). Photocatalysis- a novel approach for solving various environmental and disinfection problems: A Brief Review. Journal of Applied Sciences Research, 8, 4147-4155.
Navarrete Angulo, S. M., & Peñafiel Carpio, F. J. (2019). Estudio de las características del fotocatalizador dióxido de titanio en concretos, según la norma UNI 11259. http://www.dspace.uce.edu.ec/handle/25000/20195
Pacheco-Torgal, F., Diamanti, M. V., Nazari, A., Goran-Granqvist, C., Pruna, A., & Amirkhanian, S. (2018). Nanotechnology in Eco-efficient Construction: Materials, Processes and Applications. Woodhead Publishing.
Palmisano, G., Yurdakal, S., Augugliaro, V., Loddo, V., & Palmisano, L. (2007). Photocatalytic Selective Oxidation of 4-Methoxybenzyl Alcohol to Aldehyde in Aqueous Suspension of Home-Prepared Titanium Dioxide Catalyst. Advanced Synthesis & Catalysis, 349(6), 964-970. https://doi.org/10.1002/adsc.200600435
Palmisano, L., Augugliaro, V., Bellardita, M., Di Paola, A., García López, E., Loddo, V., Marcì, G., Palmisano, G., & Yurdakal, S. (2011). Titania photocatalysts for selective oxidations in water. ChemSusChem, 4(10), 1431-1438. https://doi.org/10.1002/cssc.201100196
Reches, Y. (2018). Nanoparticles as concrete additives: Review and perspectives. Construction and Building Materials, 175, 483-495. https://doi.org/10.1016/j.conbuildmat.2018.04.214
Rhee, I., Lee, J.-S., Kim, J. B., & Kim, J.-H. (2018). Nitrogen Oxides Mitigation Efficiency of Cementitious Materials Incorporated with TiO2. Materials, 11(6), 877. https://doi.org/10.3390/ma11060877
Salman, M. M., Eweed, K. M., & Hameed, A. M. (2016). Influence of partial replacement TiO2 nanoparticles on the compressive and flexural strength of ordinary cement mortar. Al-Nahrain Journal for Engineering Sciences, 19(2), 265-270. https://nahje.com/index.php/main/article/view/20
Segura Montoya, D. J., & Camelo Manzanares, D. M. (2019). Evaluación de las propiedades foto catalíticas de prefabricados para obras de infraestructura vial en concreto adicionado con dióxido de titanio (TIO2) [Tesis]. http://repository.unipiloto.edu.co/handle/20.500.12277/5759
Sikora, P., Augustyniak, A., Cendrowski, K., Nawrotek, P., & Mijowska, E. (2018). Antimicrobial Activity of Al2O3, CuO, Fe3O4, and ZnO Nanoparticles in Scope of Their Further Application in Cement-Based Building Materials. Nanomaterials, 8(4), 212. https://doi.org/10.3390/nano8040212
Teoh, W. Y., Scott, J. A., & Amal, R. (2012). Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors. The Journal of Physical Chemistry Letters, 3(5), 629-639. https://doi.org/10.1021/jz3000646
Trujillo, M., & Ossa, A. (2019, noviembre 18). Resistencia al daño inducido por humedad en pavimentos purificadores de aire. https://doi.org/10.3233/STAL190218
Tsai, S.-J., & Cheng, S. (1997). Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants. Catalysis Today, 33(1), 227-237. https://doi.org/10.1016/S0920-5861(96)00152-6
Vásquez Espinoza, M. A. A. (2016). Influencia del fotocatalizador dióxido de titanio en la propiedad autolimpiable del concreto f’c=210 kg/cm2. Universidad Nacional de Cajamarca. http://repositorio.unc.edu.pe/handle/20.500.14074/1296
Wang, D., Zhang, W., Ruan, Y., Yu, X., & Han, B. (2018). Enhancements and mechanisms of nanoparticles on wear resistance and chloride penetration resistance of reactive powder concrete. Construction and Building Materials, 189, 487-497. https://doi.org/10.1016/j.conbuildmat.2018.09.041
Wang, D., Zheng, Q., Ouyang, J., Yu, X., & Han, B. (2018). Influences of curing period on mechanical properties of reactive powder concrete incorporating nanoparticles. Materials Research Express, 6(2), 025023. https://doi.org/10.1088/2053-1591/aaed8b
Wrighton, M. S., Ellis, A. B., Wolczanski, P. T., Morse, D. L., Abrahamson, H. B., & Ginley, D. S. (1976). Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. Journal of the American Chemical Society, 98(10), 2774-2779. https://doi.org/10.1021/ja00426a017
Yang, L., Hakki, A., Wang, F., & Macphee, D. E. (2018). Photocatalyst efficiencies in concrete technology: The effect of photocatalyst placement. Applied Catalysis B: Environmental, 222, 200-208. https://doi.org/10.1016/j.apcatb.2017.10.013
Yang, L. Y., Jia, Z. J., Zhang, Y. M., & Dai, J. G. (2015). Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes. Cement and Concrete Composites, 57, 1-7. https://doi.org/10.1016/j.cemconcomp.2014.11.009
Zhang, R., Cheng, X., Hou, P., & Ye, Z. (2015). Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage. Construction and Building Materials, 81, 35-41. https://doi.org/10.1016/j.conbuildmat.2015.02.003
Zhong, L., & Haghighat, F. (2015). Photocatalytic air cleaners and materials technologies – Abilities and limitations. Building and Environment, 91, 191-203. https://doi.org/10.1016/j.buildenv.2015.01.033
Derechos de autor 2023 Jenisse del Rocío Fernández Mantilla
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.