Una Comparación de Reactivos Alternos al Cianuro como Lixiviantes del Oro: Una revisión

Palabras clave: oro, lixiviación, cianuración, mapas bibliográficos

Resumen

El oro es un metal de gran interés en áreas como la ingeniería, la joyería y las finanzas, es por ello por lo que hay un gran interés en la investigación de técnicas de recuperación de oro de diversas fuentes, como los minerales o los desechos electrónicos. Existen múltiples solventes que son capaces de formar complejos con el oro, como por ejemplo el iodo, tiourea, tiosulfato, tiocianato, glicina y el cianuro; este último siendo el más utilizado a escala industrial. En el presente artículo se revisan los reactivos más utilizados para la lixiviación del oro analizando su panorama mediante herramientas de mapeo bibliográfico en los últimos 5 años, usando estas herramientas se concluye que a pesar la relevancia con la que cuentan los sistemas libres de cianuro para la disolución de oro, el cianuro seguirá siendo relevante tanto industrialmente por sus ventajas operativas y económicas como en materia científica buscando formas de mitigar sus efectos dañinos.

Descargas

La descarga de datos todavía no está disponible.

Citas

Altinkaya, P., Wang, Z., Korolev, I., Hamuyuni, J., Haapalainen, M., Kolehmainen, E., Yliniemi, K., & Lundström, M. (2020). Leaching and recovery of gold from ore in cyanide-free glycine media. Minerals Engineering, 158, 106610. https://doi.org/10.1016/j.mineng.2020.106610

ASM International Handbook Committee. (1998). Metals Handbook (2a ed.). CRC Press. http://sme.vimaru.edu.vn/sites/sme.vimaru.edu.vn/files/volume_2_-_properties_and_selection_nonf.pdf

Aylmore, M. G. (2016). Alternative lixiviants to cyanide for leaching gold ores. En Gold Ore Processing: Project Development and Operations (Vol. 1, pp. 447–484). Elsevier. https://doi.org/10.1016/B978-0-444-63658-4.00027-X

Aylmore, M. G., & Muir, D. M. (2001). Thiosulfate leaching of gold-a review. Minerals Engineering, 14(2), 135–174. https://doi.org/https://doi.org/10.1016/S0892-6875(00)00172-2

Azizitorghabeh, A., Mahandra, H., Ramsay, J., & Ghahreman, A. (2021). Gold Leaching from an Oxide Ore Using Thiocyanate as a Lixiviant: Process Optimization and Kinetics. ACS Omega, 6(27), 17183–17193. https://doi.org/10.1021/acsomega.1c00525

Baloyi, N. P., Nseke, J. M., & Makhatha, M. E. (2022). Application of response surface methodology (RSM) for simultaneous optimization of kinetic parameters affecting gold leaching in thiosulfate based media: A statistical approach. Journal of Chemistry. https://doi.org/10.1155/2022/8348167

Birich, A., Gao, Z., Vrucak, D., & Friedrich, B. (2023). Sensitivity of gold lixiviants for metal impurities in leaching of RAM printed circuit boards. Metals, 13(5). https://doi.org/10.3390/met13050969

Borda, J., & Torres, R. (2022). Prospects for Thiourea as a Leaching Agent in Colombian Gold Small-Scale Mining: A Comprehensive Review. Journal of Sustainable Mining, 21(4), 298–308. https://doi.org/10.46873/2300-3960.1364

Das, S., Natarajan, G., & Ting, Y. P. (2017). Bio-extraction of precious metals from urban solid waste. AIP Conference Proceedings, 1805. https://doi.org/10.1063/1.4974410

Equipo de redaccion de Paperpile. (s/f). The top list of academic search engines. Paperpile. Recuperado el 7 de noviembre de 2023, de https://paperpile.com/g/academic-search-engines/#faq

Faraji, F., Mahandra, H., & Ghahreman, A. (2022). Evaluation of different amino acids on growth and cyanide production by bacillus megaterium for gold recovery. Sustainability (Switzerland), 14(15). https://doi.org/10.3390/su14159639

Faraji, F., Wang, J., Mahandra, H., & Ghahreman, A. (2021). A green and dustainable process for the recovery of gold from low-grade sources using biogenic cyanide generated by bacillus megaterium: A comprehensive study. ACS Sustainable Chemistry and Engineering, 9(1), 236–245. https://doi.org/10.1021/acssuschemeng.0c06904

Garza-Román, M. R., Carrillo-Pedroza, F. R., Picazo-Rodríguez, N. G., Soria-Aguilar, M. de J., Almaguer-Guzmán, I., & Chaidez-Félix, J. (2021). Effects of pretreatment and leaching medium on the extraction efficiency of Au and Ag from a chalcopyrite leaching by-product. DYNA (Colombia), 88(218), 119–126. https://doi.org/10.15446/dyna.v88n218.90284

Han, Y., Yi, X., Wang, R., Huang, J., Chen, M., Sun, Z., Sun, S., & Shu, J. (2020). Copper extraction from waste printed circuit boards by glycine. Separation and Purification Technology, 253. https://doi.org/10.1016/j.seppur.2020.117463

Hilario-Mallma, C. M., & Ramos-Coronado, J. J. (2020). Cinética electroquímica de reactivos alternativos al cianuro en la lixiviación del oro en la planta de lixiviación de Laytaruma [Tesis de Licenciatura]. Universidad nacional del centro del Perú.

Ippolito, N. M., Birloaga, I., Ferella, F., Centofanti, M., & Vegliò, F. (2021). Preliminary study on gold recovery from high grade e-waste by thiourea leaching and electrowinning. Minerals, 11(3), 1–16. https://doi.org/10.3390/min11030235

Jamett, I., Carrasco, P., Olmos, M., & Hernández, P. (2023). Glycine/glutamate: “Green” alternatives to recover metals from minerals/residues—Review of current research. Minerals, 13(1). https://doi.org/10.3390/min13010022

Jenkin, G. R. T., Al-Bassam, A. Z. M., Harris, R. C., Abbott, A. P., Smith, D. J., Holwell, D. A., Chapman, R. J., & Stanley, C. J. (2016). The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals. Minerals Engineering, 87, 18–24. https://doi.org/10.1016/j.mineng.2015.09.026

Jeon, S., Bright, S., Park, I., Kuze, A., Ito, M., & Hiroyoshi, N. (2022). A Kinetic Study on Enhanced Cementation of Gold Ions by Galvanic Interactions between Aluminum (Al) as an Electron Donor and Activated Carbon (AC) as an Electron Mediator in Ammonium Thiosulfate System. Minerals, 12(1). https://doi.org/10.3390/min12010091

Jorjani, E., & Askari, H. (2022). Gold leaching from ores using biogenic lixiviants – A review. Current Research in Biotechnology, 4, 10–20. https://doi.org/10.1016/j.crbiot.2021.12.003

Keskinen, S. (2013). Comparison of cyanide and thiosulphate leaching for gold production (a literature review) [Tesis de Licenciatura, Lappeenranta University if technology]. En lutpub.lut.fi. https://lutpub.lut.fi/bitstream/handle/10024/94208/Comparison%20of%20Cyanide%20and%20Thiosulphate%20Leaching%20for%20Gold%20Production.pdf?sequence=2

Konyratbekova, S. S., Baikonurova, A., & Akcil, A. (2014). Non-cyanide leaching processes in gold hydrometallurgy and iodine-iodide applications: A review. Mineral Processing and Extractive Metallurgy Review, 36(3), 198–212. https://doi.org/10.1080/08827508.2014.942813

La Brooy, S. R., Linge’i, H. G., Walker, G. S., & Parker, A. J. (1994). Review of gold extraction from ores. Minerals Engineering, 7(10), 1213–1241. https://doi.org/https://doi.org/10.1016/0892-6875(94)90114-7

Le, G., Li, W. J., Song, K., Song, Y. S., Chen, Y., Bai, A. P., & Cheng, Y. (2022). Electrochemical dissolution behavior of gold and its main coexistent sulfide minerals in acid thiocyanate solutions. Rare Metals, 41(1), 254–261. https://doi.org/10.1007/s12598-020-01614-y

Li, H., Yin, S., Li, S., Zhang, L., Peng, J., & Yang, K. (2021). Investigation on the recovery of gold from pretreated cyanide tailings using chlorination leaching process. Separation Science and Technology (Philadelphia), 56(1), 45–53. https://doi.org/10.1080/01496395.2019.1708108

Li, J., & Miller, J. D. (2006). A review of gold leaching in acid thiourea solutions. Mineral Processing and Extractive Metallurgy Review, 27(3), 177–214.

https://doi.org/10.1080/08827500500339315

Liu, Z. wei, Guo, X. yi, Tian, Q. hua, & Zhang, L. (2022). A systematic review of gold extraction: Fundamentals, advancements, and challenges toward alternative lixiviants. Journal of Hazardous Materials, 440. https://doi.org/10.1016/j.jhazmat.2022.129778

Logsdon, M. J., Hagelstein, Karen., Mudder, Terry., & International Council on Metals and the Environment. (1999). The management of cyanide in gold extraction. International Council on Metals and the Environment.

Manzila, A. N., Moyo, T., & Petersen, J. (2022). A study on the applicability of agitated cyanide leaching and thiosulphate leaching for gold extraction in artisanal and small-scale gold mining. Minerals, 12(10). https://doi.org/10.3390/min12101291

Marsden, J. O., & House, C. (2006). The chemistry of gold extraction (2a ed.). Society for minning metallurgy, and exploration, Inc.

Medina, D., & Anderson, C. G. (2020). A review of the cyanidation treatment of copper-gold ores and concentrates. Metals, 10(7), 1–11. https://doi.org/10.3390/met10070897

Moreno-Cedillos, J. G., Carillo-Pedroza, F. R., & Soria-Aguilar, M. J. (2022, octubre). Extracción de Au en un sistema halógeno-halogenuro (I2-I-). Geomimet, 7–11.

Munganyinka, J. P., Habinshuti, J. B., Komadja, G. C., Uwamungu, P., Tanvar, H., Ofori-Sarpong, G., Mishra, B., Onwualu, A. P., & Shuey, S. (2022). Optimization of Gold Dissolution Parameters in Acidified Thiourea Leaching Solution with Hydrogen Peroxide as an Oxidant: Implications of Roasting Pretreatment Technology. Metals, 12(10). https://doi.org/10.3390/met12101567

Munive, G. T., Encinas, M. A., Salazar Campoy, M. M., Álvarez, V. E., Vazquez, V. M., & Choque, D. C. (2020). Leaching Gold and Silver with an Alternative System: Glycine and Thiosulfate from Mineral Tailings. JOM, 72(2), 918–924. https://doi.org/10.1007/s11837-019-03652-z

Noroña Alarcón, C., Noroña Alarcón, J., & Paladines Rodríguez, J. (2019). Análisis de la exportación de los desechos electrónicos y su incidencia en el comercio exterior del ecuador. Espirales revista multidisciplinaria de investigación científica.

https://www.redalyc.org/articulo.oa?id=573263325004

Oraby, E. A., & Eksteen, J. J. (2015). The leaching of gold, silver and their alloys in alkaline glycine-peroxide solutions and their adsorption on carbon. Hydrometallurgy, 152, 199–203. https://doi.org/10.1016/j.hydromet.2014.12.015

Oraby, E. A., Eksteen, J. J., Karrech, A., & Attar, M. (2019). Gold extraction from paleochannel ores using an aerated alkaline glycine lixiviant for consideration in heap and in-situ leaching applications. Elsevier.

Picazo-Rodríguez, N., Carrillo-Pedroza, F., Martínez-Luévanos, A., Soria-Aguilar, M., Almaguer-Guzmán, I., & Garza-Roman, M. (2022). Recuperación de oro y plata de los insolubles y productos de la lixiviación directa usando cianuración-glicina. XX Encuentro Sobre Procesamiento de Minerales.

https://repositorioinstitucional.uaslp.mx/xmlui/bitstream/handle/i/8028/PonenciaIM.2022.Recuperaci%C3%B3n.Carrillo.pdf?sequence=1&isAllowed=y

Picazo-Rodríguez, N. G., Carrillo-Pedroza, F. R., Soria-Aguilar, M. D. J., Guzmán, I. A., & Luévanos, A. M. (2022). Análisis de la cianuración convencional y asistida con glicina de un residuo procedente de la lixiviación directa de esfalerita. Instituto de Metalurgia UASLP. https://repositorioinstitucional.uaslp.mx/xmlui/bitstream/handle/i/8052/Ponencia.IM.2022.An%C3%A1lisis.Carrillo.pdf?sequence=1&isAllowed=y

Ponghiran, W., Charoensaeng, A., & Khaodhiar, S. (2021). The environmental impact assessment of gold extraction processes for discarded computer RAM: a comparative study of two leaching chemicals. Journal of Material Cycles and Waste Management, 23(4), 1412–1422. https://doi.org/10.1007/s10163-021-01221-8

Pourbaix, M. (1974). Atlas of Electrochemical Equilibria in-Aqueous Solutions (2a ed.). National Association of Corrosion Engineers.

Ray, D. A., Baniasadi, M., Graves, J. E., Greenwood, A., & Farnaud, S. (2022). Thiourea Leaching: An Update on a Sustainable Approach for Gold Recovery from E-waste. En Journal of Sustainable Metallurgy (Vol. 8, Número 2, pp. 597–612). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40831-022-00499-8

Rezaee, M., Abdollahi, H., Saneie, R., Mohammadzadeh, A., Rezaei, A., Karimi Darvanjooghi, M. H., Brar, S. K., & Magdouli, S. (2022). A cleaner approach for high-efficiency regeneration of base and precious metals from waste printed circuit boards through stepwise oxido-acidic and thiocyanate leaching. Chemosphere, 298.

https://doi.org/10.1016/j.chemosphere.2022.134283

Rizki, I. N., Tanaka, Y., & Okibe, N. (2019). Thiourea bioleaching for gold recycling from e-waste. Waste Management, 84(84), 158–165. https://doi.org/10.1016/j.wasman.2018.11.021

Sánchez, J., Segundo, S., González, E. J., & González, M. (2019). Formación y caracterización de disolventes eutécticos profundos: Aplicación a la extracción de moléculas de interés [Tesis de Licenciatura]. Escuela Técnica Superior de Ingenieros Industriales.

Soltani, F., Marzban, M., Darabi, H., Aazami, M., & Hemmati Chegeni, M. (2020). Effect of Oxidative Pretreatment and Lead Nitrate Addition on the Cyanidation of Refractory Gold Ore. JOM, 72(2), 774–781. https://doi.org/10.1007/s11837-019-03859-0

Ubaldini, S., Fornari, P., Massidda, R., & Abbruzzese, C. (1998). An innovative thiourea gold leaching process. Hydrometallurgy, 48, 113–124.

Wang, J., Xie, F., Wang, W., Bai, Y., Fu, Y., & Chang, Y. (2020). Leaching of gold from a free milling gold ore in copper-citrate-thiosulfate solutions at elevated temperatures. Minerals Engineering, 155. https://doi.org/10.1016/j.mineng.2020.106476

Weishuhn, M. (2023). Inciteful. Inciteful: Citation network exploration. https://inciteful.xyz

Xie, F., Chen, J. nan, Wang, J., & Wan, W. (2021). Review of gold leaching in thiosulfate-based solutions. Transactions of Nonferrous Metals Society of China (English Edition), 31(11), 3506–3529. https://doi.org/10.1016/S1003-6326(21)65745-X

Xiong, Q., Jiang, S., Fang, R., Chen, L., Liu, S., Liu, Y., Yin, S., Hou, H., & Wu, X. (2021). An environmental-friendly approach to remove cyanide in gold smelting pulp by chlorination aided and corncob biochar: Performance and mechanisms. Journal of Hazardous Materials, 408. https://doi.org/10.1016/j.jhazmat.2020.124465

Xu, B., Li, K., Li, Q., Yang, Y., Liu, X., & Jiang, T. (2019). Kinetic studies of gold leaching from a gold concentrate calcine by thiosulfate with cobalt-ammonia catalysis and gold recovery by resin adsorption from its pregnant solution. Separation and Purification Technology, 213, 368–377. https://doi.org/10.1016/j.seppur.2018.12.064

Yu, S., Yu, T., Song, W., Yu, X., Qiao, J., Wang, W., Dong, H., Wu, Z., Dai, L., & Li, T. (2020). Ultrasound-assisted cyanide extraction of gold from gold concentrate at low temperature. Ultrasonics Sonochemistry, 64. https://doi.org/10.1016/j.ultsonch.2020.105039

Zupanc, A., Heliövaara, E., Moslova, K., Eronen, A., Kemell, M., Podlipnik, Č., Jereb, M., & Repo, T. (2022). Iodine-Catalysed Dissolution of Elemental Gold in Ethanol. Angewandte Chemie - International Edition, 61(14). https://doi.org/10.1002/anie.202117587

Publicado
2023-12-26
Cómo citar
Galvan Lira , J. M., Soria Aguilar, M. de J., Carrillo Pedroza, F. R., & Aguilera González , E. N. (2023). Una Comparación de Reactivos Alternos al Cianuro como Lixiviantes del Oro: Una revisión. Ciencia Latina Revista Científica Multidisciplinar, 7(6), 2410-2434. https://doi.org/10.37811/cl_rcm.v7i6.8864
Sección
Artículos