Tarifas y Agua Virtual en Tres Cultivos del Distrito de Riego 003 Tula, Hidalgo, México

Palabras clave: cuota de agua, tarificación, eficiencia del agua, agua virtual

Resumen

El precio que pagan los productores por el agua no alcanza para recuperar los costos de operación y mantenimiento. Una política de precios puede contribuir a uso eficiente del agua, a mejoras en la tecnificación de riego y a la reconversión de cultivos de mayor valor. El objetivo fue determinar la tarifa del agua por dam3 para producir una tonelada de alfalfa, maíz grano y avena forrajera, en los diferentes módulos del distrito de riego 003 Tula, Hidalgo. El enfoque de la metodología fue cuantitativo a partir de datos de la cuota actual de riego, el rendimiento del cultivo y la lámina de riego. Los resultados sugieren que la tarifa calculada del agua es diferente para cada cultivo y para cada módulo de riego; en promedio, fue mayor para la avena forrajera, seguido del maíz grano y la alfalfa. Incrementar las cuotas de riego a medida que aumenta la demanda de agua representa un freno a esos incrementos. Sin embargo, incrementar las tarifas en el distrito de riego 003 no resultaría en una reconversión de cultivos debido a que la contaminación del agua les impide sembrar cultivos que requieren mejor calidad de agua.

Descargas

La descarga de datos todavía no está disponible.

Citas

Aldaya, M. M., Martínez-Santos, P., & Llamas, M. R. (2010). Incorporating the water footprint and virtual water into policy: Reflections from the Mancha Occidental region, Spain. Water Resources Management, 24(5), 941–958. https://doi.org/10.1007/S11269-009-9480-8/METRICS

Arredondo, S. M., & Wilson, P. N. (2004). A farmer-centered analysis of irrigation management transfer in Mexico. Irrigation and Drainage Systems, 18(1), 89–107.

https://doi.org/10.1023/B:IRRI.0000019516.75955.1a

Bartolini, F., Gallerani, V., Raggi, M., & Viaggi, D. (2009). Water management and irrigated agriculture in Italy: multicriteria analysis of alternative policy scenarios. Water Policy, 12(1), 135–147. https://doi.org/10.2166/wp.2009.158

Calatrava, J., & Garrido, A. (2010). Agricultural Water Pricing: EU and Mexico. In Sustainable Management of Water Resources in Agriculture. OECD Publishing.

https://doi.org/10.1787/9789264083578-12- es .

CONAGUA. (2020). Plan de Riego para el año agrícola 2020-2021.

Cornish, G., Bosworth, B., Perry, C., & Burke, J. (2004). Water Charging in Irrigated Agriculture. An Analysis of International Experience. FAO. https://www.fao.org/3/y5690e/y5690e00.htm

Dieu-Hang, T., Grafton, R. Q., Martínez-Espiñeira, R., & Garcia-Valiñas, M. (2017). Household adoption of energy and water-efficient appliances: An analysis of attitudes, labelling and complementary green behaviours in selected OECD countries. Journal of Environmental Management, 197, 140–150. https://doi.org/10.1016/J.JENVMAN.2017.03.070

Fagundes, T. S., & Marques, R. C. (2023). Challenges of recycled water pricing. Utilities Policy, 82, 101569. https://doi.org/10.1016/J.JUP.2023.101569

Frederick, K. D. (2006). Irrigation efficiency, a key issue: more crops per drop. In Water Crisis: Myth or Reality Marcelino Botin Water Forum 2004. Taylor & Francis/Balkema.

Garrone, P., Grilli, L., & Marzano, R. (2019). Price elasticity of water demand considering scarcity and attitudes. Utilities Policy, 59, 100927. https://doi.org/10.1016/J.JUP.2019.100927

Griffin, R. (2006). Water Pricing. In Water Resource Economics. The MIT Press. https://fundacionbotin.org/89dguuytdfr276ed_uploads/Observatorio Tendencias/PUBLICACIONES/LIBROS SEM INTERN/water crisis/librocompleto-watercrisis.pdf

Guerrero, H., Gómez, F., & Rodríguez, J. R. (2015). Water Pricing in Mexico: Pricing Structures and Implications. In A. Dinar, V. Pochat, & J. Albiac-Murillo (Eds.), Water Pricing Experiences and Innovations (pp. 231–247). Springer International Publishing. https://doi.org/10.1007/978-3-319-16465-6_12

Gurría, Á. (2008). Los precios del agua para la agricultura. La Exposición Internacional Zaragoza 2008. https://www.oecd.org/environment/lospreciosdelaguaparalaagricultura-observacionesdeangelgurriasecretariogeneraldelaocde.htm

Hoekstra, A. Y., & Chapagain, A. K. (2007). Water footprints of nations: Water use by people as a function of their consumption pattern. Integrated Assessment of Water Resources and Global Change, 21, 35–48. https://doi.org/10.1007/978-1-4020-5591-1_3

Kang, S., Hao, X., Du, T., Tong, L., Su, X., Lu, H., Li, X., Huo, Z., Li, S., & Ding, R. (2017). Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agricultural Water Management, 179, 5–17.

https://doi.org/10.1016/J.AGWAT.2016.05.007

Marston, L., & Konar, M. (2017). Drought impacts to water footprints and virtual water transfers of the Central Valley of California. Water Resources Research, 53(7), 5756–5773.

https://doi.org/10.1002/2016WR020251

Molle, F., & Berkoff, J. (2007). Water pricing in irrigation: The lifetime of an idea. Irrigation Water Pricing: The Gap Between Theory and Practice, 1–20.

https://doi.org/10.1079/9781845932923.0001

Momeni, M., Zakeri, Z., Esfandiari, M., Behzadian, K., Zahedi, S., & Razavi, V. (2019). Comparative analysis of agricultural water pricing between Azarbaijan Provinces in Iran and the state of California in the US: A hydro-economic approach. Agricultural Water Management, 223, 105724. https://doi.org/10.1016/J.AGWAT.2019.105724

Momeni, M., Zakeri, Z., Zahedi, S., & Razavi, V. (2019). Investigation on water content of selected agricultural products of East Azarbaijan and West Azarbaijan. International Journal of Hydrology Science and Technology, 9(2), 189–200. https://doi.org/10.1504/IJHST.2019.098163

Ríos-Flores, J. L., Torres Moreno, M., Ruiz Torres, J., & Torres Moreno, M. A. (2016). Efficiency and productivity of water irrigation in wheat (Triticum vulgare) from Ensenada and Valle de Mexicali, Baja California, Mexico. Acta Universitaria, 26(1), 20–29. https://doi.org/10.15174/au.2016.825

Santos, A. L., Palacios, E., Exebio, A., & Chalita, L. E. (2000). Metodología para evaluar la distribución de costos e ingresos relacionados con el servicio de riego. Agrociencia, 34(5), 639–649. https://agrociencia-colpos.org/index.php/agrociencia/article/view/68/68

Shen, D., Yu, X., & Shi, J. (2015). Introducing New Mechanisms into Water Pricing Reforms in China. In A. Dinar, V. Pochat, & J. Albiac-Murillo (Eds.), Water Pricing Experiences and Innovations (pp. 343–358). Springer International Publishing. https://doi.org/10.1007/978-3-319-16465-6_17

Shi-Kun, S., Pu-Te, W., Yu-Bao, W., & Xi-Ning, Z. (2013). The virtual water content of major grain crops and virtual water flows between regions in China. Journal of the Science of Food and Agriculture, 93(6), 1427–1437. https://doi.org/10.1002/JSFA.5911

Su, X., Li, J., & Singh, V. P. (2014). Optimal Allocation of Agricultural Water Resources Based on Virtual Water Subdivision in Shiyang River Basin. Water Resources Management, 28(8), 2243–2257. https://doi.org/10.1007/S11269-014-0611-5/TABLES/6

Sun, S., Zhang, C. F., Li, X., Zhou, T., Wang, Y., Wu, P., & Cai, H. (2017). Sensitivity of crop water productivity to the variation of agricultural and climatic factors: A study of Hetao irrigation district, China. Journal of Cleaner Production, 142, 2562–2569.

https://doi.org/10.1016/J.JCLEPRO.2016.11.020

Toan, T. D. (2016). Water Pricing Policy and Subsidies to Irrigation: a Review. Environmental Processes, 3(4), 1081–1098. https://doi.org/10.1007/s40710-016-0187-6

Wang, J., Huang, J., Zhang, L., Huang, Q., & Rozelle, S. (2010). Water governance and water use efficiency: The five principles of WUA management and performance in China. Journal of the American Water Resources Association, 46(4), 665–685. https://doi.org/10.1111/j.1752-1688.2010.00439.x

Wang, X., & Hu, J. (2015). Research on Virtual Water in the Chinese International Grain Trade. Modern Economy, 06(06), 735–746. https://doi.org/10.4236/me.2015.66070

Xu, M., & Li, C. (2020a). Optimal Water Utilization and Allocation Strategy Based on Water Footprint Accounting. Application of the Water Footprint: Water Stress Analysis and Allocation, 127–144. https://doi.org/10.1007/978-981-15-0234-7_11

Xu, M., & Li, C. (2020b). The Concepts of Virtual Water and Water Footprint. Application of the Water Footprint: Water Stress Analysis and Allocation, 9–16. https://doi.org/10.1007/978-981-15-0234-7_2

Zamani, O., Azadi, H., Mortazavi, S. A., Balali, H., Moghaddam, S. M., & Jurik, L. (2021). The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran. Agricultural Water Management, 245, 106548. https://doi.org/10.1016/J.AGWAT.2020.106548

Zhang, C., McBean, E. A., & Huang, J. (2014). A Virtual Water Assessment Methodology for Cropping Pattern Investigation. Water Resources Management, 28(8), 2331–2349.

https://doi.org/10.1007/S11269-014-0618-Y/TABLES/12

Publicado
2024-01-22
Cómo citar
Hernández Pérez , J., Hernández Ortiz, J., Valdivia Alcalá , R., & Arana Coronado, O. A. (2024). Tarifas y Agua Virtual en Tres Cultivos del Distrito de Riego 003 Tula, Hidalgo, México. Ciencia Latina Revista Científica Multidisciplinar, 7(6), 7507-7519. https://doi.org/10.37811/cl_rcm.v7i6.9291
Sección
Artículos