Implicaciones Fisiopatológicas de la Relación entre la Obesidad y la Hipertensión en la Salud Cardiovascular

Palabras clave: obesidad, hipertensión, inflamación crónica, riesgo cardiovascular

Resumen

En las personas con obesidad prevalecen las enfermedades cardiacas, osteoartritis, diabetes y trastornos hormonales; estos últimos indican irregularidades en el eje hipotálamo-pituitario-gonadal, específicamente a nivel de la función de las neuronas. La relación entre la obesidad y la hipertensión es compleja y multifactorial. Numerosos estudios epidemiológicos y clínicos han demostrado que el exceso de grasa corporal, en particular el adipocito visceral, contribuye al desarrollo de la resistencia a la insulina, la disfunción endotelial y la activación del sistema nervioso simpático, todos los cuales están estrechamente relacionados con la hipertensión. Además, la obesidad también se asocia con la inflamación crónica de bajo grado, que puede desencadenar una cascada de eventos patológicos que contribuyen al daño vascular y al aumento de la presión arterial. En esta revisión, exploraremos los mecanismos subyacentes que conectan la obesidad con la hipertensión, analizaremos las implicaciones de esta relación en la función vascular, el estrés oxidativo y los riesgos cardiovasculares asociados a la obesidad e hipertensión. A través de un examen crítico de las últimas investigaciones y hallazgos científicos, esperamos arrojar luz sobre esta cuestión vital para la salud pública y proporcionar una base sólida para futuras investigaciones y estrategias de atención médica.

Descargas

La descarga de datos todavía no está disponible.

Citas

Anzalone, D. A. & Tuck, M. L. (1997). Lisinopril versus hydrochlorothiazide in obese hypertensive patients: a multicenter placebo-controlled trial. Treatment in Obese Patients With Hypertension (TROPHY) Study Group. Hypertension, 30(1), 140-145. DOI: 10.1161/01.hyp.30.1.140.

Armitage, J. A., Burke, S. L, Prior, L. J., Barzel, B., Eikelis, N., Lim, K. & Head, G. A. (2012). Rapid onset of renal sympathetic nerve activation in rabbits fed a high-fat diet. Hypertension, 60(1), 163-171. DOI: 10.1161/HYPERTENSIONAHA.111.190413.

Bordicchia, M., Liu, D., Amri, E. Z., Ailhaud, G., Dessì-Fulgheri, P., Zhang, C., Takahashi, N., Sarzani, R. & Collins, S. (2012). Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest, 122(3), 1022-1036. DOI: 10.1172/JCI59701.

Boustany, C. M., Brown, D. R., Randall, D. C. & Cassis, L. A. (2005). AT1-receptor antagonism reverses the blood pressure elevation associated with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol, 289(1), 181-186. DOI: 10.1152/ajpregu.00507.2004.

Buie, J. J., Watson, L. S., Smith, C. J. & Sims-Robinson, C. (2019). Obesity-related cognitive impairment: The role of endothelial dysfunction. Neurobiol Dis, 132(1), 25-42. DOI: 10.1016/j.nbd.2019.104580.

Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., Delzenne, N. M., Alessi, M. C. & Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761-1772. DOI: 10.2337/db06-1491.

Carbone, S., Lavie, C. J., Elagizi, A., Arena, R. & Ventura, H. O. (2020). The impact of obesity in heart failure. Heart Fail Clin, 16(1), 71-80. DOI: 10.1016/j.hfc.2019.08.008.

Carroll, J. F., Huang, M., Hester, R. L, Cockrell, K. & Mizelle, H. L. (1995). Hemodynamic alterations in hypertensive obese rabbits. Hypertension, 26(3), 465-470. DOI: 10.1161/01.hyp.26.3.465.

Cassis, L. A. & Dwoskin, L. P. (1991). Presynaptic modulation of neurotransmitter release by endogenous angiotensin II in brown adipose tissue. J Neural Transm Suppl, 34(1), 129-137. DOI: 10.1007/978-3-7091-9175-0_17.

Cassis, L. A., Fettinger, M. J., Roe, A. L., Shenoy, U. R. & Howard, G. (1996). Characterization and regulation of angiotensin II receptors in rat adipose tissue. Angiotensin receptors in adipose tissue. Adv Exp Med Biol, 396(1), 39-47. DOI: 10.1007/978-1-4899-1376-0_5.

Chandra, A., Neeland, I. J., Berry, J. D., Ayers, C. R., Rohatgi, A., Das, S. R., Khera, A., McGuire, D. K., de Lemos, J. A. & Turer, A. T. (2014). The relationship of body mass and fat distribution with incident hypertension: observations from the Dallas heart study. J Am Coll Cardiol, 64(10), 997-1002. DOI: 10.1016/j.jacc.2014.05.057.

Chow, B. W. & Gu, C. (2015). The molecular constituents of the blood-brain barrier. Trends Neurosci, 38(10), 598-608. DOI: 10.1016/j.tins.2015.08.003.

Chughtai, H. L., Morgan, T. M., Rocco, M., Stacey, B., Brinkley, T. E., Ding, J., Nicklas, B., Hamilton, C. & Hundley, W. G. (2010). Renal sinus fat and poor blood pressure control in middle-aged and elderly individuals at risk for cardiovascular events. Hypertension, 56(5), 901-906. DOI: 10.1161/HYPERTENSIONAHA.110.157370.

De Kloet, A. D., Krause, E. G. & Woods, S. C. (2010). The renin angiotensin system and the metabolic syndrome. Physiol Behav, 100(5), 525-34. DOI: 10.1016/j.physbeh.2010.03.018.

De Paula, G. C., Brunetta, H. S., Engel, D. F., Gaspar, J. M., Velloso, L. A., Engblom, D., De Oliveira, J., De Bem, A. F. (2021). Hippocampal function is impaired by a short-term high-fat diet in mice: Increased blood-brain barrier permeability and neuroinflammation as triggering events. Front Neurosci, 2(4), 152-165. DOI: 10.3389/fnins.2021.734158.

Dorresteijn, J. A., Schrover, I. M., Visseren, F. L., Scheffer, P. G., Oey, P. L., Danser, A. H. & Spiering, W. (2013). Differential effects of renin-angiotensin-aldosterone system inhibition, sympathoinhibition and diuretic therapy on endothelial function and blood pressure in obesity-related hypertension: a double-blind, placebo-controlled cross-over trial. J Hypertens, 31(2), 393-403. DOI: 10.1097/HJH.0b013e32835b6c02.

Elsaafien, K., De Kloet, A. D., Krause, E. G. & Sumners, C. (2020). Brain Angiotensin Type-1 and Type-2 Receptors in Physiological and Hypertensive Conditions: Focus on Neuroinflammation. Curr Hypertens Rep, 22(7), 31-48. DOI: 10.1007/s11906-020-01062-0.

English, V. & Cassis L. (1999). Facilitation of sympathetic neurotransmission contributes to angiotensin regulation of body weight. J Neural Transm, 106(8), 631-644. DOI: 10.1007/s007020050185.

Everard, A., Lazarevic, V., Derrien, M., Girard, M., Muccioli, G. G., Neyrinck, A. M., Possemiers, S., Van Holle, A., François, P., de Vos, W. M., Delzenne, N. M., Schrenzel, J. & Cani, P. D. (2011). Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes, 60(11), 2775-2786. DOI: 10.2337/db11-0227.

Fasshauer, M., Klein, J., Neumann, S., Eszlinger, M. & Paschke, R. (2002). Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun, 290(3), 1084-1089. DOI: 10.1006/bbrc.2001.6307.

Fu, L., Zhou, Y., Sun, J., Zhu, Z. & Tai, S. (2022). Abdominal obesity is associated with an increased risk of all-cause mortality in males but not in females with HFpEF. Cardiovasc Ther, 2(3), 14-33. DOI: 10.1155/2022/2950055.

Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752-1761.

Grassi, G., Seravalle, G., Dell'Oro, R., Trevano, F. Q., Bombelli, M., Scopelliti, F., Facchini, A., Mancia, G. (2003). Comparative effects of candesartan and hydrochlorothiazide on blood pressure, insulin sensitivity, and sympathetic drive in obese hypertensive individuals: results of the CROSS study. J Hypertens, 21(9), 1761-1769. DOI: 10.1097/00004872-200309000-00027.

Gupte, M., Boustany-Kari, C. M., Bharadwaj, K., Police, S., Thatcher, S., Gong, M. C., English, V.L. & Cassis, L. A. (2008). ACE2 is expressed in mouse adipocytes and regulated by a high-fat diet. Am J Physiol Regul Integr Comp Physiol, 295(3), R781-8. DOI: 10.1152/ajpregu.00183.2008.

Hall, J. E. (1997). Mechanisms of abnormal renal sodium handling in obesity hypertension. Am J Hypertens, 10(5), 49-55. DOI: 10.1049.AJH.9160781.

Hall, J. E. (2003). The kidney, hypertension, and obesity. Hypertension, 41(3), 625-633. DOI: 10.1161/01.HYP.0000052314.95497.78.

Hall, J. E., Brands, M. W., Dixon, W. N. & Smith, M. J. Jr. (1993). Obesity-induced hypertension. Renal function and systemic hemodynamics. Hypertension, 22(3), 292-299. DOI: 10.1161/01.hyp.22.3.292.

Hall, J. E., Crook, E. D., Jones, D. W., Wofford, M. R. & Dubbert, P. M. (2002). Mechanisms of obesity-associated cardiovascular and renal disease. Am J Med Sci, 324(3), 127-137. DOI: 10.1097/00000441-200209000-00003.

Hall, J. E., da Silva, A. A., do Carmo, J. M., Dubinion, J., Hamza, S., Munusamy, S., Smith, G. & Stec, D.E. (2010). Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem, 285(23), 17271-17276. DOI: 10.1074/jbc.R110.113175.

Hall, J. E., do Carmo, J. M., da Silva, A. A., Wang, Z. & Hall, M. E. (2019). Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol, 2(6), 367-385. DOI: 10.1038/s41581-019-0145-4.

Hall, J. E., Mouton, A. J., da Silva, A. A., Omoto, A. C. M., Wang, Z., Li, X. & do Carmo, J. M. (2021). Obesity, kidney dysfunction, and inflammation: interactions in hypertension. Cardiovasc Res, 117(8), 1859-1876. DOI: 10.1093/cvr/cvaa336.

Hall, M. E., do Carmo, J. M., da Silva, A. A., Juncos, L. A., Wang, Z. & Hall, J. E. (2014). Obesity, hypertension, and chronic kidney disease. Int J Nephrol Renovasc Dis, 18(7), 75-88. DOI: 10.2147/IJNRD.S39739.

Hargrave, S. L., Davidson, T. L., Lee, T. J. & Kinzig, K. P. (2015). Brain and behavioral perturbations in rats following Western diet access. Appetite, 93(1), 35-43. DOI: 10.1016/j.appet.2015.03.037.

Harrison DG, Gongora MC. Oxidative stress and hypertension. Med Clin North Am. 2004;88(1):251-268.

Hsu, T. M. & Kanoski, S. E. (2014). Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia. Front Aging Neurosci, 6(88). 1-6 DOI: 10.3389/fnagi.2014.00088.

Jais, A., Solas, M., Backes, H., Chaurasia, B., Kleinridders, A., Theurich, S., Mauer, J., Steculorum, S. M., Hampel, B., Goldau, J., Alber, J., Förster, C. Y., Eming, S. A., Schwaninger, M., Ferrara, N., Karsenty, G. & Brüning, J. C. (2016). Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell, 165(4), 882-895. DOI: 10.1016/j.cell.2016.03.033.

Januzzi, J.L. Jr, & Mohebi, R. (2021). Obesity-mediated disruption of natriuretic peptide-blood pressure rhythms. J Am Coll Cardiol, 77(18). 2304-2306. DOI: 10.1016/j.jacc.2021.03.317.

Kanoski, S. E. & Davidson, T. L. (2011). Western diet consumption and cognitive impairment: links to hippocampal dysfunction and obesity. Physiol Behav, 103(1), 59-68. DOI: 10.1016/j.physbeh.2010.12.003.

Kim, S., Dugail, I., Standridge, M., Claycombe, K., Chun, J. & Moustaïd-Moussa, N. (2001). Angiotensin II-responsive element is the insulin-responsive element in the adipocyte fatty acid synthase gene: role of adipocyte determination and differentiation factor 1/sterol-regulatory-element-binding protein 1c. Biochem J, 357(3), 899-904. DOI: 10.1042/0264-6021:3570899.

Könner, A. C. & Brüning, J. C. (2011). Toll-like receptors: linking inflammation to metabolism. Trends Endocrinol Metab, 22(1), 16-23. DOI: 10.1016/j.tem.2010.08.007.

Lorena, F. B., Do Nascimento, B. P. P., Camargo, E. L. R. A., Bernardi, M. M., Fukushima, A. R., Do N Panizza, J., De B Nogueira, P., Brandão, M. E. S. & Ribeiro, M. O. (2021). Long-term obesity is associated with depression and neuroinflammation. Arch Endocrinol Metab, 65(5), 537-548. DOI: 10.20945/2359-3997000000400.

Lumeng, C. N. & Saltiel, A. R. (2011). Inflammatory links between obesity and metabolic disease. J Clin Invest, 121(6), 2111-2117. DOI: 10.1172/JCI57132.

Ly, M., Raji, C. A., Yu, G. Z., Wang, Q., Wang, Y., Schindler, S. E., An, H., Samara, A., Eisenstein, S. A., Hershey, T., Smith, G., Klein, S., Liu, J., Xiong, C., Ances, B. M., Morris, J. C. & Benzinger, T. L. S. (2021). Obesity and White Matter Neuroinflammation Related Edema in Alzheimer's Disease Dementia Biomarker Negative Cognitively Normal Individuals. J Alzheimers Dis, 79(4), 1801-1811. DOI: 10.3233/JAD-201242.

Messerli, F. H., Christie, B., DeCarvalho, J. G., Aristimuno, G. G., Suarez, D.H., Dreslinski, G. R. & Frohlich, E. D. (1981). Obesity and essential hypertension. Hemodynamics, intravascular volume, sodium excretion, and plasma renin activity. Arch Intern Med, 141(1), 81–85. DOI: 10.1001/archinte.141.1.81.

Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocr Rev. 2007;28(5):463-491.

Parcha, V., Patel, N., Gutierrez, O. M., Li, P., Gamble, K. L., Musunuru, K., Margulies, K. B., Cappola, T. P., Wang, T. J., Arora, G. & Arora, P. (2021) Chronobiology of natriuretic peptides and blood pressure in lean and obese individuals. J Am Coll Cardiol, 77(18). 2291-2303. DOI: 10.1016/j.jacc.2021.03.291.

Robles, R. G., Villa, E., Santirso, R., Martínez, J., Ruilope, L. M., Cuesta, C. & Sancho, J. M. (1993). Effects of captopril on sympathetic activity, lipid and carbohydrate metabolism in a model of obesity-induced hypertension in dogs. Am J Hypertens, 6(12), 1009-1015. DOI: 10.1093/ajh/6.12.1009.

Salameh, T. S., Mortell, W. G., Logsdon, A. F., Butterfield, D. A. & Banks, W. A. (2019). Disruption of the hippocampal and hypothalamic blood-brain barrier in a diet-induced obese model of type II diabetes: prevention and treatment by the mitochondrial carbonic anhydrase inhibitor, topiramate. Fluids Barriers CNS, 16(1), 1- 21. DOI: 10.1186/s12987-018-0121-6.

Santiago, S. J. M., Vega-Torres, J. D., Ontiveros-Angel, P., Bin Lee, J., Arroyo Torres, Y., Cruz Gonzalez, A. Y., Aponte Boria, E., Zabala Ortiz, D., Alvarez Carmona, C. & Figueroa, J. D. (2021). Oxidative stress and neuroinflammation in a rat model of co-morbid obesity and psychogenic stress. Behav Brain Res, 6(3), 112-145. DOI: 10.1016/j.bbr.2020.112995.

Sharma, I., Liao, Y., Zheng, X. & Kanwar, Y. S. (2021). New pandemic: obesity and associated nephropathy. Front Med (Lausanne), 8(7). 556-567. DOI: 10.3389/fmed.2021.673556.

Shenoy, U. & Cassis, L. (1997). Characterization of renin activity in brown adipose tissue. Am J Physiol, 272(3), 989-999. DOI: 10.1152/ajpcell.1997.272.3.C989.

Stranahan, A. M., Hao, S., Dey, A., Yu, X. & Baban, B. (2016). Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice. J Cereb Blood Flow Metab, 36(12), 2108-2121. DOI: 10.1177/0271678X16642233.

Sugerman, H., Windsor, A., Bessos, M. & Wolfe, L. (1997). Intra-abdominal pressure, sagittal abdominal diameter and obesity comorbidity. J Intern Med, 241(1),71-99. DOI: 10.1046/j.1365-2796.1997.89104000.x.

Thaler, J. P., Yi, C. X., Schur, E. A., Guyenet, S. J., Hwang, B. H., Dietrich, M. O., Zhao, X., Sarruf, D. A., Izgur, V., Maravilla, K. R., Nguyen, H. T., Fischer, J. D., Matsen, M. E., Wisse, B. E., Morton, G. J., Horvath, T. L., Baskin, D. G., Tschöp, M. H. & Schwartz, M. W. (2012). Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest, 122(1), 153-162. DOI: 10.1172/JCI59660.

Thatcher, S., Yiannikouris, F., Gupte, M. & Cassis, L. (2009). The adipose renin-angiotensin system: role in cardiovascular disease. Mol Cell Endocrinol, 302(2), 111-117. DOI: 10.1016/j.mce.2009.01.019.

Van, D. P. & Lacoste, B. (2018). Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier. Front Neurosci, 11(2), 12-30. DOI: 10.3389/fnins.2018.00930.

Publicado
2024-02-03
Cómo citar
Soto Félix, C., Vázquez Ibarra, K. J., Angulo Camacho, J. Ángel, & Ibarra Sánchez , A. (2024). Implicaciones Fisiopatológicas de la Relación entre la Obesidad y la Hipertensión en la Salud Cardiovascular. Ciencia Latina Revista Científica Multidisciplinar, 8(1), 953-970. https://doi.org/10.37811/cl_rcm.v8i1.9474
Sección
Ciencias de la Salud