Inteligencia Artificial: Hacia un Nuevo Paradigma en Medicina
Resumen
La inteligencia artificial (IA), es una disciplina y también un conjunto de capacidades cognoscitivas e intelectuales expresadas a través de sistemas informáticos para imitar la inteligencia humana en la realización de tareas y que tiene el potencial de mejorar conforme recibe más información. Actualmente abarca una gran variedad de campos y las ciencias de la salud no son ajenas a sus avances, que van desde apoyo diagnóstico hasta tratamiento y rehabilitación, con la posibilidad de mejorar la calidad de vida de la población. En el presente documento se revisan sus alcances y perspectivas, con información actualizada.
Descargas
Citas
Alexander, A., Jiang, A., Ferreira, C., & Zurkiya, D. (2020). An intelligent future for medical imaging: a market outlook on artificial intelligence for medical imaging. Journal of the American College of Radiology, 17(1), 165-170.
Angelov, P., Soares, E., Jiang, R., Arnold, N., Atkinson, P. (2021). Explainable artificial intelligence: an analytical review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 11(5), e1424.
Baxi, V., Edwards, R., Montalto, M., Saha, S. (2022). Digital pathology and artificial intelligence in translational medicine and clinical practice. Modern Pathology, 35(1), 23-32.
Bender, A., & Cortés-Ciriano, I. (2021). Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug discovery today, 26(2), 511-524.
Bharti, S., & Aryal, S. (2023). The right to privacy and an implication of the EU General Data Protection Regulation (GDPR) in Europe: Challenges to the companies. Journal of Contemporary European Studies, 31(4), 1391-1402.
Blanchar, T., De la Hoz, F. (2022). Inteligencia artificial en medicina y procedimientos quirúrgicos: impacto en la toma de decisiones y la salud. Rev Cub Salud Publica 48(4). Disponible en:
http://scielo.sld.cu/scielo.php?pid=S0864-34662022000400012&script=sci_arttext&tlng=es
Buch, V., Ahmed, I., Maruthappu, M. (2018). Artificial intelligence in medicine: current trends and future possibilities. Br J Gen Pract, 68(668),143–4.
Chan, K., Fowles, J., Weiner, J. (2010). Review: Electronic health records and the reliability and validity of quality measures: A review of the literature. Med Care Res Rev, 67(5),503–27.
Chen, R., Wang, J., Williamson, D., Chen, T., Lipkova, J., Lu, M., et al. (2023). Algorithmic fairness in artificial intelligence for medicine and healthcare. Nature biomedical engineering, 7(6), 719-742.
Chien, C., Dauzère-Pérès, S., Huh, W., Jang, Y., & Morrison, J. (2020). Artificial intelligence in manufacturing and logistics systems: algorithms, applications, and case studies. International Journal of Production Research, 58(9), 2730-2731.
Deng, J., Lin, Y. (2023). The benefits and challenges of ChatGPT: An overview. Frontiers in Computing and Intelligent Systems, 2(2),81–3.
DiGiorgio, A., Ehrenfeld, J. (2023). Artificial intelligence in medicine & ChatGPT: De-tether the physician. J Med Syst, 47(1), 32.
Gómez, S., Llinás, A. (2023). E-Salud. En: Parra, A., Gómez, S., Macías, K., Llinás, P., Gaviria, G., Vargas, R., et al. (2023). Gestión Integral en salud. Aporía Editores, Barranquilla.
Gupta, N., & Kumar, P. (2023). Perspective of artificial intelligence in healthcare data management: A journey towards precision medicine. Computers in Biology and Medicine, 162, 107051.
Baque Fienco , S. M., Plúa Cárdenas, D. F., Choez Mero , C. J., Choez Lourido , W. S., & Parrales Cantos , G. N. (2024). Planificación y Control Técnico del Proceso Constructivo de una Residencia Aplicando la Normativa Ecuatoriana. Estudios Y Perspectivas Revista Científica Y Académica , 4(1), 2011–2030. https://doi.org/10.61384/r.c.a.v4i1.163
Tiboni Kaiut, R. K., Spercoski Kaiut, A. F., & Agrela Rodrigues, F. de A. (2024). Yoga - Memória, Foco e Concentração . Revista Científica De Salud Y Desarrollo Humano, 5(1), 96–107. https://doi.org/10.61368/r.s.d.h.v5i1.78
Silva Becerra , F. (2024). El contexto de la micropolítica que estructura el grupo institucional en la escuela. Emergentes - Revista Científica, 4(2), 74–102. https://doi.org/10.60112/erc.v4i2.131
Vargas, J. (2023). Educational Transformation: Exploring Self-Directed English Learning through Language Reactor and Netflix. Revista Veritas De Difusão Científica, 4(1), 68–95. https://doi.org/10.61616/rvdc.v4i1.38
Fernández C., F. (2024). Determinación De Erodabilidad En Áreas De Influencia Cuenca Poopo Región Andina De Bolivia. Horizonte Académico, 4(4), 63–78. Recuperado a partir de https://horizonteacademico.org/index.php/horizonte/article/view/19
Medina Nolasco, E. K., Mendoza Buleje, E. R., Vilca Apaza, G. R., Mamani Fernández, N. N., & Alfaro Campos, K. (2024). Tamizaje de cáncer de cuello uterino en mujeres de una región Andina del Perú. Arandu UTIC, 11(1), 50–63. https://doi.org/10.69639/arandu.v11i1.177
Da Silva Santos , F., & López Vargas , R. (2020). Efecto del Estrés en la Función Inmune en Pacientes con Enfermedades Autoinmunes: una Revisión de Estudios Latinoamericanos. Revista Científica De Salud Y Desarrollo Humano, 1(1), 46–59. https://doi.org/10.61368/r.s.d.h.v1i1.9
Haidegger, T., Speidel, S., Stoyanov, D., & Satava, R. (2022). Robot-assisted minimally invasive surgery—Surgical robotics in the data age. Proceedings of the IEEE, 110(7), 835-846.
Herzog, C. (2022). On the ethical and epistemological utility of explicable AI in medicine. Philosophy & Technology, 35(2), 50.
Jiménez-Luna, J., Grisoni, F., Weskamp, N., & Schneider, G. (2021). Artificial intelligence in drug discovery: recent advances and future perspectives. Expert opinion on drug discovery, 16(9), 949-959.
Khatri, M. (2023). Integration of natural language processing, self-service platforms, predictive maintenance, and prescriptive analytics for cost reduction, personalization, and real-time insights customer service and operational efficiency. International Journal of Information and Cybersecurity, 7(9), 1-30.
Kiener, M. (2021). Artificial intelligence in medicine and the disclosure of risks. AI & society, 36(3), 705-713.
Kordzadeh, N., & Ghasemaghaei, M. (2022). Algorithmic bias: review, synthesis, and future research directions. European Journal of Information Systems, 31(3), 388-409.
Krzyzanowski, B., & Manson, S. (2022). Twenty years of the health insurance portability and accountability act safe harbor provision: unsolved challenges and ways forward. JMIR medical informatics, 10(8), e37756.
Liaw, S., Liyanage, H., Kuziemsky, C., Terry, A., Schreiber, R., Jonnagaddala, J., & de Lusignan, S. (2020). Ethical use of electronic health record data and artificial intelligence: recommendations of the primary care informatics working group of the international medical informatics association. Yearbook of medical informatics, 29(01), 051-057.
Llinás, A. (2022). Retos de la educación superior después de la pandemia por sars-cov2. Revista Boletín Redipe, 11(11), 177-182.
Lovejoy, C., Buch, V., Maruthappu, M. (2019). Artificial intelligence in the intensive care unit. Crit Care, 23(1):7.
Mahmud, H., Islam, A., Ahmed, S., & Smolander, K. (2022). What influences algorithmic decision-making? A systematic literature review on algorithm aversion. Technological Forecasting and Social Change, 175, 121390.
Malhotra, P., Gupta, S., Koundal, D., Zaguia, A., & Enbeyle, W. (2022). Deep Neural Networks for Medical Image Segmentation. Journal of Healthcare Engineering, 2022(1), 9580991.
Meroueh, C., & Chen, Z. (2023). Artificial intelligence in anatomical pathology: building a strong foundation for precision medicine. Human Pathology, 132, 31-38.
Miller, D., Nelson, C., Oleynikov, D. (2009). Shortened OR time and decreased patient risk through use of a modular surgical instrument with artificial intelligence. Surg Endosc, 23(5),1099-105.
Murdoch, B. (2021). Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Medical Ethics, 22, 1-5.
Najjar, R. (2023). Redefining radiology: a review of artificial intelligence integration in medical imaging. Diagnostics, 13(17), 2760.
Nundy, S., Cooper, L., & Mate, K. (2022). The quintuple aim for health care improvement: a new imperative to advance health equity. Jama, 327(6), 521-522.
Oikonomou, E., & Khera, R. (2023). Machine learning in precision diabetes care and cardiovascular risk prediction. Cardiovascular Diabetology, 22(1), 259.
Prabhod, K. (2024). The Role of Artificial Intelligence in Reducing Healthcare Costs and Improving Operational Efficiency. Quarterly Journal of Emerging Technologies and Innovations, 9(2), 47-59.
Reddy, S., Allan, S., Coghlan, S., & Cooper, P. (2020). A governance model for the application of AI in health care. Journal of the American Medical Informatics Association, 27(3), 491-497.
Regalado, M., Medina, A. (2022). La inteligencia artificial al servicio de la medicina. Atención Primaria Práctica, 4(3),100143.
Rivera, S., Liu, X., Chan, A., Denniston, A., Calvert, M., Ashrafian, H., et al. (2020). Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. The Lancet Digital Health, 2(10), e549-e560.
Ruiz, R., Velásquez, J. (2023). Inteligencia artificial al servicio de la salud del futuro. Rev médica Clín Las Condes, 34(1), 84–91.
Taylor, C., Draney, M., Ku, J., Parker, D., Steele, B., Wang, K., et al. (1999). Predictive medicine: Computational techniques in therapeutic decision-making. Comput Aided Surg, 4(5), 231–47.
Ueda, D., Kakinuma, T., Fujita, S., Kamagata, K., Fushimi, Y., Ito, R., et al. (2024). Fairness of artificial intelligence in healthcare: review and recommendations. Japanese Journal of Radiology, 42(1), 3-15.
Yin, S., Kaynak, O. (2015). Big data for modern industry: challenges and trends. Proc IEEE. 103(2),143–6.
Yin, S., Li, X., Gao, H., Kaynak, O. (2014). Data-based techniques focused on modern industry: an overview. IEEE Trans Industr Electron. 62(1), 657–67.
Yip, M., Salcudean, S., Goldberg, K., Althoefer, K., Menciassi, A., Opfermann, J., et al. (2023). Artificial intelligence meets medical robotics. Science, 381(6654), 141-146.
Zaman, K., Reaz, M., Ali, S., Bakar, A., & Chowdhury, M. (2021). Custom hardware architectures for deep learning on portable devices: a review. IEEE Transactions on Neural Networks and Learning Systems, 33(11), 6068-6088.
Derechos de autor 2024 Adalgisa Alcocer Olaciregui , Pedro Llinás Burgos, Gabriela Lara Barreto, Camila Morales-Beleño, Sergio Ochoa Andrade
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.