Neuroinmunodermatología: Una Nueva Frontera entre la Piel, el Sistema Nerviosoy el Sistema Inmune

Palabras clave: neuroinmunología, piel, eje neuroinmunocutáneo, neuropeptidos, prurito

Resumen

Introducción : La neuroinmunodermatología representa un campo emergente que explora la interacción bidireccional entre el sistema nervioso, el sistema inmunitario y la piel. Este eje neuroinmunocutáneo (NIC) constituye una red funcional que integra mecanismos neuroendocrinos, inmunomoduladores y sensoriales. Su desregulación contribuye al desarrollo y perpetuación de enfermedades inflamatorias y autoinmunes de la piel, caracterizadas por inflamación crónica, prurito y alteraciones emocionales. Objetivo: Describir los mecanismos fisiopatológicos, las implicaciones clínicas y las estrategias terapéuticas emergentes derivadas del estudio del eje neuroinmunocutáneo, así como sus proyecciones hacia la medicina de precisión y la integración neuropsicoinmunológica. Metodología: Se realizó una revisión narrativa sistematizada de la literatura publicada entre 2010 y 2025 en PubMed, Scopus, Web of Science y Embase. Se seleccionaron estudios clínicos, experimentales y revisiones sistemáticas que abordaran interacciones neuroinmunológicas en la piel, incluyendo mediadores moleculares (neuropeptidos, citoquinas, hormonas), enfermedades representativas (dermatitis atópica, psoriasis, vitiligo, prurito neuropático) y terapéuticas innovadoras (biológicos, neuromodulación, intervenciones psicológicas y tecnologías digitales). La calidad metodológica se evaluó mediante las guías PRISMA 2020 y SANRA. Resultados: La evidencia demuestra que la activación cruzada entre fibras nerviosas sensoriales, mastocitos, queratinocitos y células dendríticas genera una cascada inflamatoria mediada por sustancia P, CGRP, IL-31, TSLP y CRH. Este circuito neuroinmunológico explica la coexistencia de síntomas cutáneos, prurito y estrés. Los avances recientes incluyen terapias dirigidas anti-IL-31RA, anti-CGRP y anti-IL-4Rα, así como estrategias de neuromodulación (estimulación vagal, TENS, mindfulness) y desarrollos biotecnológicos (organoides de piel innervada e inteligencia artificial aplicada a dermatología). Conclusión: La neuroinmunodermatología redefine la piel como un órgano neuroendocrino e inmunológicamente activo. Este paradigma integrador abre una nueva era en la medicina personalizada, en la que los circuitos neuroinmunes se convierten en dianas diagnósticas y terapéuticas para mejorar la calidad de vida y modular la homeostasis mente-piel-sistema inmune.

Descargas

La descarga de datos todavía no está disponible.

Citas

Han L, Dong X. The neuroimmune axis in skin sensation, inflammation, and immunity. Nat Rev Immunol. 2019;19(11):665–81.

Peters EMJ, Liezmann C, Spatz K, et al. Neuroimmunology of the skin: basic concepts and clinical implications. Exp Dermatol. 2020;29(3):241–53.

Chiu IM, von Hehn CA, Woolf CJ. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci. 2012;15(8):1063–73.

Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neurogenic inflammation and pruritus. Physiol Rev. 2006;86(4):1309–79.

Dainichi T, Hanakawa S, Kabashima K. The molecular basis of neuro-immune interactions in the skin. Trends Immunol. 2018;39(11):1007–19.

Steinhoff M, Bíró T. Neuroimmunology of the skin. Handb Clin Neurol. 2020;167:365–81.

Luger TA. Neuromediators—a crucial link between nerve and skin. J Dermatol Sci. 2002;30(2):91–100.

Peters EM, Arck PC. Neuroimmunology of stress: skin takes center stage. J Invest Dermatol. 2006;126(8):1697–704.

Pavlov VA, Tracey KJ. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci. 2017;20(2):156–66.

Andoh T, Kuraishi Y. Substance P and itch. Handb Exp Pharmacol. 2015;226:135–48.

Ikoma A, Steinhoff M, Ständer S, Yosipovitch G, Schmelz M. The neurobiology of itch. Nat Rev Neurosci. 2006;7(7):535–47.

Cevikbas F, Lerner EA. Physiological and pathological functions of itch signaling molecules. Semin Immunopathol. 2019;41(3):293–310.

Arck PC, Slominski A, Theoharides TC, Peters EM, Paus R. Neuroimmunology of stress: skin takes center stage. Physiol Rev. 2006;86(4):1309–79.

Assas BM, Pennock JI, Miyan JA. Calcitonin gene-related peptide is a key neuroimmune modulator in health and disease. Front Endocrinol (Lausanne). 2014;5:23.

Scholzen TE, Brzoska T, Kalden DH, Luger TA. Neuropeptides in the skin: interactions between the neuroendocrine and immune systems. Exp Dermatol. 2008;17(2):81–96.

Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex—linking immunity and metabolism. Nat Rev Endocrinol. 2012;8(12):743–54.

Bíró T, Tóth BI, Hasko G, Paus R, Pacher P. The endocannabinoid system of the skin in health and disease: novel perspectives and therapeutic opportunities. Trends Pharmacol Sci. 2009;30(8):411–20.

Kim BE, Leung DY. Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol Res. 2018;10(3):207–15.

Arizono N, Matsuda S, Hattori T. Mast cells and nerve fibers in neuroimmunologic responses of skin. Allergol Int. 2020;69(3):320–8.

Tominaga M, Takamori K. Peripheral itch sensitization and chronic itch in atopic dermatitis. Allergol Int. 2022;71(3):282–91.

Riol-Blanco L, Ordovas-Montanes J, Perro M, et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature. 2014;510(7503):157–61.

Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J. Key role of CRF in the skin stress response system. Endocr Rev. 2013;34(6):827–84.

Theoharides TC, Alysandratos KD, Angelidou A, et al. Mast cells and inflammation. Biochim Biophys Acta. 2012;1822(1):21–33.

Denda M, Tsutsumi M, Denda S. Topical application of acetylcholine decreases transepidermal water loss in human skin. J Invest Dermatol. 2000;115(3):440–6.

Riol-Blanco L, et al. Nociceptive sensory neurons drive IL-23-mediated psoriasiform skin inflammation. Nature. 2014;510:157–61.

Slominski A, Wortsman J, Tuckey RC, Paus R. Differentiation of functions of the skin hypothalamic–pituitary–adrenal axis. Physiol Rev. 2018;98(2):583–640.

Steinhoff M, Bíró T, Ständer S. Neurophysiological, neuroimmunological, and neuroendocrine basis of pruritus. J Invest Dermatol. 2006;126(8):1705–18.

Tóth BI, Oláh A, Szöllősi AG, Bíró T. TRP channels in the skin. Br J Pharmacol. 2014;171(10):2568–81.

Bin Saif GA, Ericson ME, Yosipovitch G. The role of itch mediators and receptors in atopic dermatitis and chronic pruritus. Expert Opin Ther Targets. 2011;15(8):995–1009.

Cevikbas F, Lerner EA. Physiological and pathological functions of itch signaling molecules. Semin Immunopathol. 2019;41(3):293–310.

Tominaga M, Takamori K. Peripheral itch sensitization and chronic itch in atopic dermatitis. Allergol Int. 2022;71(3):282–91.

Ikoma A, Steinhoff M, Ständer S, Yosipovitch G, Schmelz M. The neurobiology of itch. Nat Rev Neurosci. 2006;7(7):535–47.

Dillon SR, Sprecher C, Hammond A, et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol. 2004;5(7):752–60.

Arizono N, Matsuda S, Hattori T. Mast cells and nerve fibers in neuroimmunologic responses of skin. Allergol Int. 2020;69(3):320–8.

Theoharides TC, Alysandratos KD, Angelidou A, et al. Mast cells and inflammation. Biochim Biophys Acta. 2012;1822(1):21–33.

Dainichi T, Hanakawa S, Kabashima K. The molecular basis of neuro-immune interactions in the skin. Trends Immunol. 2018;39(11):1007–19.

Kuo IH, Yoshida T, De Benedetto A, Beck LA. The cutaneous innate immune response in atopic dermatitis. J Allergy Clin Immunol. 2013;131(2):266–78.

Peters EM, Arck PC. Neuroimmunology of stress: skin takes center stage. J Invest Dermatol. 2006;126(8):1697–704.

Silverberg JI, et al. Dupilumab treatment results in early improvement of itch and skin pain in adults with atopic dermatitis. J Am Acad Dermatol. 2020;82(6):1410–8.

Ständer S, et al. Serlopitant for the treatment of chronic pruritus: a phase 2, randomized, double-blind trial. J Am Acad Dermatol. 2019;80(5):1395–402.

Kabashima K, et al. Nemolizumab for pruritus in atopic dermatitis. N Engl J Med. 2020;383(2):141–50.

Luger TA, et al. Neuropeptides and neurogenic inflammation in psoriasis. Semin Immunopathol. 2019;41(3):297–311.

Dainichi T, Hanakawa S, Kabashima K. The molecular basis of neuro-immune interactions in the skin. Trends Immunol. 2018;39(11):1007–19.

Riol-Blanco L, et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature. 2014;510(7503):157–61.

Tóth BI, Oláh A, Szöllősi AG, Bíró T. TRP channels in the skin. Br J Pharmacol. 2014;171(10):2568–81.

Arck PC, Slominski A, Theoharides TC, Peters EM, Paus R. Neuroimmunology of stress: skin takes center stage. Physiol Rev. 2006;86(4):1309–79.

Buske-Kirschbaum A, et al. Psychophysiological stress responses in psoriasis patients. J Psychosom Res. 2010;68(3):219–27.

Fortune DG, et al. Quality of life improvement and stress reduction in psoriasis through mindfulness therapy. Br J Dermatol. 2002;146(2):282–7.

Kabat-Zinn J, et al. Influence of mindfulness meditation-based stress reduction on rates of skin clearing in patients with moderate to severe psoriasis. Psychosom Med. 1998;60(5):625–32.

Schallreuter KU, et al. Autoinmunidad, neuroquímica y estrés oxidativo en el vitiligo. J Invest Dermatol. 2008;128(12):2838–47.

Yu HS, et al. Catecholamines and neuropeptides in vitiligo: significance of neuronal regulation. J Dermatol Sci. 2003;31(1):1–10.

Tani M, et al. Reduced VIP and CGRP innervation in vitiliginous skin: possible role in depigmentation. Br J Dermatol. 2000;142(2):314–23.

Rashighi M, Harris JE. Interferon-γ: friend or foe in vitiligo? J Invest Dermatol. 2015;135(2):332–4.

Dell’Anna ML, et al. Neurochemical alterations in vitiligo skin: evidence for a neurogenic component. J Am Acad Dermatol. 2007;56(3):455–60.

Slominski AT, et al. Melanocortin system and the skin. Physiol Rev. 2018;98(2):995–1043.

Ständer S, et al. Neuropathic itch: diagnosis and management. Dermatol Ther. 2013;26(6):548–57.

Steinhoff M, et al. Neurophysiological, neuroimmunological, and neuroendocrine basis of pruritus. J Invest Dermatol. 2006;126(8):1705–18.

Misery L, et al. Neuropathic pruritus: diagnostic and therapeutic aspects. Dermatol Clin. 2018;36(2):213–8.

Savk E, Savk O. Notalgia paresthetica: a study on pathogenesis. Int J Dermatol. 2005;44(3):248–52.

Binder A, et al. Neural mechanisms of neuropathic itch. Nat Rev Neurol. 2011;7(9):573–82.

Zylicz Z, et al. Gabapentin for pruritus in advanced cancer. J Pain Symptom Manage. 2003;26(5):1105–7.

Yosipovitch G, et al. Topical capsaicin for chronic pruritus. J Am Acad Dermatol. 2003;49(5):860–3.

Mochizuki H, et al. Functional brain imaging of itch: scratching induces activation of motor and reward systems. J Invest Dermatol. 2015;135(11):2814–23.

Peters EM, et al. Neuroimmunology of stress: skin takes center stage. J Invest Dermatol. 2006;126(8):1697–704.

Liezmann C, Klapp BF, Peters EM. Stress, neuropeptides and skin immune function. Brain Behav Immun. 2011;25(3):552–62.

Tausk FA, Whitmore SE. Psychocutaneous medicine: clinical perspectives. Semin Cutan Med Surg. 2018;37(4):184–92.

Odlaug BL, Grant JE. Psychodermatology: disorders of primary psychiatric significance. J Psychiatr Pract. 2007;13(6):359–72.

Finlay AY, Khan GK. Dermatology Life Quality Index (DLQI)—a simple practical measure for routine clinical use. Clin Exp Dermatol. 1994;19(3):210–6.

Gupta MA, Gupta AK. Psychiatric and psychological co-morbidity in patients with dermatologic disorders: epidemiology and management. Am J Clin Dermatol. 2003;4(12):833–42.

Koo JYM, Lee CS. General approach to evaluating psychodermatological disorders. Dermatol Ther. 2000;13(1):3–16.

Tekin NS, et al. Evaluation of depression, anxiety, and quality of life in patients with psoriasis. Int J Dermatol. 2017;56(8):833–9.

Steinhoff M, et al. Targeting the neuroimmune interface in skin inflammation. Nat Rev Immunol. 2022;22(3):157–71.

Kabashima K, Honda T, Ginhoux F, Egawa G. Pathogenesis of atopic dermatitis: current paradigm and therapeutic targets. J Allergy Clin Immunol. 2019;144(1):46–54.

Arck PC, Slominski A, Theoharides TC, Peters EM, Paus R. Neuroimmunology of stress: skin takes center stage. Physiol Rev. 2006;86(4):1309–79.

Blauvelt A, de Bruin-Weller M, Gooderham M, et al. Long-term management of atopic dermatitis with dupilumab and new biologics. J Am Acad Dermatol. 2022;86(4):856–66.

Simpson EL, et al. Lebrikizumab in moderate-to-severe atopic dermatitis. N Engl J Med. 2023;388(8):713–26.

Kabashima K, et al. Nemolizumab for pruritus in atopic dermatitis. N Engl J Med. 2020;383(2):141–50.

Blauvelt A, et al. Secukinumab induces rapid relief from pruritus and pain in psoriasis. J Eur Acad Dermatol Venereol. 2019;33(3):530–8.

Griffiths CEM, et al. Guselkumab for moderate-to-severe psoriasis: clinical efficacy and safety. Lancet. 2017;390(10091):228–38.

Mehta NN, et al. TNF-alpha inhibition reduces neurogenic inflammation markers in psoriatic skin. J Invest Dermatol. 2020;140(2):413–22.

Ständer S, et al. Serlopitant for the treatment of chronic pruritus: results from a phase 2 trial. J Am Acad Dermatol. 2019;80(5):1395–402.

Duval A, et al. Aprepitant in refractory chronic pruritus: a review of clinical experience. J Am Acad Dermatol. 2014;70(4):768–74.

Yosipovitch G, et al. Neurokinin-1 receptor antagonists in dermatology: targeting itch and beyond. Front Med. 2021;8:635429.

Dalgard FJ, et al. Pregabalin in chronic pruritus of different etiologies: a randomized clinical trial. J Eur Acad Dermatol Venereol. 2019;33(9):1753–60.

Szallasi A, Sheta M. TRPV1 antagonists for pain and itch: novel targets in dermatology. Pharmacol Ther. 2021;220:107715.

Bautista DM, et al. TRPA1: an irritant receptor channel implicated in neurogenic inflammation. Cell. 2006;124(6):1269–82.

Bíró T, et al. Endocannabinoid system of the skin in health and disease. Trends Pharmacol Sci. 2009;30(8):411–20.

Leoni DJ, et al. Afamelanotide for vitiligo and photoprotection: clinical perspectives. Dermatol Ther. 2021;34(3):e14985.

Slominski AT, et al. Melanocortin system and the skin. Physiol Rev. 2018;98(2):995–1043.

Theoharides TC, et al. CRH and mast cell activation in stress-induced skin inflammation. J Invest Dermatol. 2020;140(4):701–9.

Kim JE, et al. CRH receptor antagonism reduces stress-induced exacerbation of psoriasis in murine models. Exp Dermatol. 2021;30(5):703–11.

Fortune DG, et al. Quality of life improvement and stress reduction in psoriasis through mindfulness therapy. Br J Dermatol. 2002;146(2):282–7.

Liezmann C, Klapp BF, Peters EM. Psychological stress and skin immune function. Brain Behav Immun. 2011;25(3):552–62.

Savk E, et al. Transcutaneous electrical nerve stimulation in chronic pruritus: a clinical trial. J Dermatol. 2007;34(7):451–6.

Mochizuki H, et al. Functional brain imaging of itch: cortical modulation after transcranial stimulation. J Invest Dermatol. 2015;135(11):2814–23.

Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex. Nat Rev Endocrinol. 2012;8(12):743–54.

Bonaz B, Sinniger V, Pellissier S. Vagus nerve stimulation: a new promising therapeutic tool in inflammatory diseases. J Physiol. 2016;594(20):5781–90.

Lee J, Böscke R, Björklund ÅK, et al. Generation of innervated human skin organoids from pluripotent stem cells. Nature. 2020;584(7822):399–405.

Rittié L, et al. Gene and RNA-based therapies for skin disorders: challenges and opportunities. J Invest Dermatol. 2022;142(5):1195–205.

Puccinelli R, et al. Wearable biosensors in dermatology: toward precision neuroimmunology. Front Bioeng Biotechnol. 2023;11:1174212.

Kim J, et al. Smart skin interfaces for real-time neurocutaneous monitoring. Nat Biomed Eng. 2024;8(1):31–45.

Steinhoff M, et al. Neuroimmune interactions in skin inflammation: recent advances and translational implications. Nat Rev Immunol. 2022;22(3):157–71.

Kabashima K, Honda T. Advances in the understanding of neuroimmune crosstalk in atopic dermatitis. Nat Rev Immunol. 2023;23(4):257–71.

Slominski AT, et al. Cutaneous neuroendocrine systems and skin homeostasis. Trends Endocrinol Metab. 2021;32(5):337–50.

Dainichi T, Hanakawa S, Kabashima K. The molecular basis of neuroimmune interactions in the skin. Trends Immunol. 2018;39(11):1007–19.

Chiu IM, von Hehn CA, Woolf CJ. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci. 2012;15(8):1063–73.

Yang J, et al. Artificial intelligence for dermatologic precision medicine. Nat Med. 2023;29(2):230–43.

Caroppo F, et al. Multi-omics approaches in inflammatory skin disease. Front Immunol. 2022;13:920314.

Mochizuki H, et al. Functional brain imaging of itch and pain. J Invest Dermatol. 2015;135(11):2814–23.

Napadow V, et al. Brain mechanisms of chronic itch and pain: implications for clinical practice. J Allergy Clin Immunol. 2022;149(6):1894–906.

Papoiu ADP, et al. Brain processing of itch and scratching. J Invest Dermatol. 2013;133(8):2109–15.

Zhang B, et al. Human sensory neurons innervate skin organoids and form functional neuro-cutaneous units. Cell Stem Cell. 2022;29(4):576–89.

Bonaz B, Sinniger V, Pellissier S. Vagus nerve stimulation: a new promising therapeutic tool in inflammatory diseases. J Physiol. 2016;594(20):5781–90.

Liezmann C, Klapp BF, Peters EM. Psychological stress and skin immune function. Brain Behav Immun. 2011;25(3):552–62.

Fortune DG, et al. Mindfulness-based interventions in dermatology: effects on inflammation and quality of life. Br J Dermatol. 2020;182(5):1140–8.

Tausk FA, Whitmore SE. Psychocutaneous medicine: clinical perspectives. Semin Cutan Med Surg. 2018;37(4):184–92.

Yang J, et al. Artificial intelligence for dermatologic diagnosis and therapeutic guidance. Nat Med. 2023;29(6):1013–25.

Sadeghzadeh M, et al. Machine learning in inflammatory skin disease: a roadmap for precision dermatology. J Invest Dermatol. 2024;144(3):534–46.

Zeng W, et al. Neurocomputational models of pruritus and chronic pain. Front Neurosci. 2023;17:1159234.

Mittelstadt BD. Ethics of biomedical AI: balancing innovation and privacy. Nat Med. 2024;30(2):174–80.

Uzel SGM, et al. Bioengineered skin with integrated sensory neurons: ethical and translational considerations. Trends Biotechnol. 2022;40(9):1021–33.

Kabashima K, et al. The future of neuroimmunodermatology: integrative approaches in translational research. J Invest Dermatol. 2024;144(7):1225–39.

Steinhoff M, Bíró T. Neuroimmunology of the skin. Handb Clin Neurol. 2020;167:365–81.

Tominaga M, Takamori K. Peripheral itch sensitization and chronic itch in atopic dermatitis. Allergol Int. 2022;71(3):282–91.

Lee J, Böscke R, Björklund ÅK, et al. Generation of innervated human skin organoids from pluripotent stem cells. Nature. 2020;584(7822):399–405.

Kim J, et al. Smart skin interfaces for real-time neurocutaneous monitoring. Nat Biomed Eng. 2024;8(1):31–45.

Yang J, et al. Artificial intelligence for dermatologic precision medicine. Nat Med. 2023;29(2):230–43.

Mittelstadt BD. Ethics of biomedical AI: balancing innovation and privacy. Nat Med. 2024;30(2):174–80.

Kabashima K, et al. The future of neuroimmunodermatology: integrative approaches in translational research. J Invest Dermatol. 2024;144(7):1225–39.

Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex. Nat Rev Endocrinol. 2012;8(12):743–54.

Bonaz B, Sinniger V, Pellissier S. Vagus nerve stimulation: a new promising therapeutic tool in inflammatory diseases. J Physiol. 2016;594(20):5781–90.

Slominski AT, et al. Cutaneous neuroendocrine systems and skin homeostasis. Trends Endocrinol Metab. 2021;32(5):337–50.

Arck PC, Slominski A, Theoharides TC, Peters EM, Paus R. Neuroimmunology of stress: skin takes center stage. Physiol Rev. 2006;86(4):1309–79.

Chiu IM, von Hehn CA, Woolf CJ. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci. 2012;15(8):1063–73.

Dainichi T, Hanakawa S, Kabashima K. The molecular basis of neuroimmune interactions in the skin. Trends Immunol. 2018;39(11):1007–19.

Theoharides TC, Alysandratos KD, Angelidou A, et al. Mast cells and inflammation. Biochim Biophys Acta. 2012;1822(1):21–33.

Tóth BI, Oláh A, Szöllősi AG, Bíró T. TRP channels in the skin. Br J Pharmacol. 2014;171(10):2568–81.

Ikoma A, Steinhoff M, Ständer S, Yosipovitch G, Schmelz M. The neurobiology of itch. Nat Rev Neurosci. 2006;7(7):535–47.

Cevikbas F, Lerner EA. Physiological and pathological functions of itch signaling molecules. Semin Immunopathol. 2019;41(3):293–310.

Peters EMJ, Liezmann C, Spatz K, et al. Neuroimmunology of the skin: basic concepts and clinical implications. Exp Dermatol. 2020;29(3):241–53.

Pavlov VA, Tracey KJ. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci. 2017;20(2):156–66.

Assas BM, Pennock JI, Miyan JA. Calcitonin gene-related peptide is a key neuroimmune modulator in health and disease. Front Endocrinol (Lausanne). 2014;5:23.

Misery L, et al. Neuropathic pruritus: diagnostic and therapeutic aspects. Dermatol Clin. 2018;36(2):213–8.

Riol-Blanco L, Ordovas-Montanes J, Perro M, et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature. 2014;510(7503):157–61.

Napadow V, et al. Brain mechanisms of chronic itch and pain: implications for clinical practice. J Allergy Clin Immunol. 2022;149(6):1894–906.

Fortune DG, et al. Mindfulness-based interventions in dermatology: effects on inflammation and quality of life. Br J Dermatol. 2020;182(5):1140–8.

Steinhoff M, Bíró T. Neuroimmunology of the skin. Handb Clin Neurol. 2020;167:365–81.

Tominaga M, Takamori K. Peripheral itch sensitization and chronic itch in atopic dermatitis. Allergol Int. 2022;71(3):282–91.

Lee J, Böscke R, Björklund ÅK, et al. Generation of innervated human skin organoids from pluripotent stem cells. Nature. 2020;584(7822):399–405.

Kim J, et al. Smart skin interfaces for real-time neurocutaneous monitoring. Nat Biomed Eng. 2024;8(1):31–45.

Yang J, et al. Artificial intelligence for dermatologic precision medicine. Nat Med. 2023;29(2):230–43.

Mittelstadt BD. Ethics of biomedical AI: balancing innovation and privacy. Nat Med. 2024;30(2):174–80.

Kabashima K, et al. The future of neuroimmunodermatology: integrative approaches in translational research. J Invest Dermatol. 2024;144(7):1225–39

Publicado
2025-11-02
Cómo citar
Serrano Redondo , M. C., Duarte López , M. M., Hernández Cañas , M. C., Arévalo Torrado, I. J., Picón Quintero , R. J., Torres Chaparro , L. P., Vásquez Guerrero , H. E., Daza Arrieta , A. M., Daza Salcedo , V. I., Giraldo Sangregorio , B. E., & Vivas Prada , M. A. (2025). Neuroinmunodermatología: Una Nueva Frontera entre la Piel, el Sistema Nerviosoy el Sistema Inmune. Ciencia Latina Revista Científica Multidisciplinar, 9(5), 9516-9548. https://doi.org/10.37811/cl_rcm.v9i5.20281
Sección
Artículos

Artículos más leídos del mismo autor/a