Neurociencia de la Toma de Decisiones: Mecanismos Cerebrales, Modulación Neurotransmisora y Desafíos de la Neurotecnología en la Era Digital

Palabras clave: neurociencia, corteza prefrontal, toma de decisiones, neurotecnologías, era digital

Resumen

Esta revisión narrativa explora el papel crucial de las neurociencias en la comprensión de la toma de decisiones y el comportamiento humano. Se examina la interacción dinámica entre las regiones cerebrales clave, destacando a la corteza prefrontal (CPF) como el centro del control ejecutivo, la evaluación de opciones y la regulación emocional. Se analiza su vulnerabilidad en la adolescencia y se detalla cómo otras estructuras colaboran en el proceso: la amígdala, que influye en las decisiones emocionales y el riesgo; el hipocampo, que integra la información espacial y contextual; y el núcleo accumbens, esencial para la motivación y la recompensa. Además, se discute cómo neurotransmisores clave (dopamina, serotonina y otros) modulan estos procesos al influir en la motivación, el estado de ánimo y la impulsividad. La revisión también aborda las aplicaciones prácticas en campos como la educación y la salud, y discute los desafíos éticos de las neurotecnologías y los retos impuestos por la era digital en la atención y memoria de trabajo. Finalmente, se concluye enfatizando la necesidad de enfoques multimodales y el uso de la inteligencia artificial para una comprensión más completa de los mecanismos cerebrales subyacentes a la toma de decisiones.

Descargas

La descarga de datos todavía no está disponible.

Citas

Alexander L, Wood CM, Roberts AC. (2023). The ventromedial prefrontal cortex and emotion regulation: lost in translation? J Physiol. 601(1):37-50. https://doi.org/10.1113/JP282627.

Alex KD, Pehek EA. (2007). Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther. 113(2):296-320. https://doi.org/10.1016/j.pharmthera.2006.08.004.

Apergis-Schoute, A. M., Bijleveld, B., Gillan, C. M., Fineberg, N. A., Sahakian, B. J., & Robbins, T. W. (2018). Hyperconnectivity of the ventromedial prefrontal cortex in obsessive-compulsive disorder. Brain Neurosci Adv. 2:1-10. https://doi.org/10.1177/2398212818808710.

Aston-Jones G, Cohen JD. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Ann Rev Neurosci. 28:403-450. https://doi.org/10.1146/annurev.neuro.28.061604.135709.

Aston-Jones G, Waterhouse B. (2016). Locus coeruleus: from global projection system to adaptive regulation of behavior. Brain Res.1645:75-78. https://doi.org/10.1016/j.brainres.2016.03.001.

Attaallah B, Petitet P, Zambellas R, Toniolo S, Maio MR, Ganse-Dumrath A, Irani SR, Manohar SG, Husain M. (2024). The role of the human hippocampus in decision-making under uncertainty. Nat Hum Behav. 8:1366–1382. https://doi.org/10.1038/s41562-024-01855-2.

Baddeley A. (2012). Working Memory: Theories, Models, and Controversies. Annu Rev Psychol. 63:1-29. https://doi.org/10.1146/annurev-psych-120710-100422.

Bari A, Robbin TW, Dalley JW. (2010). Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology. 35(6):1290-1301. https://doi.org/10.1038/npp.2009.233.

Bartra O, McGuire JT, Kable JW. (2013). The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage. 76:412–427. https://doi.org/10.1016/j.neuroimage.2013.02.063.

Bechara A, Damasio H, Damasio AR, Anderson SW. (2000). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition. 50(1-3):7-15. https://doi.org/10.1016/0010-0277(94)90018-3.

Blumenfeld RS, Ranganath C. (2006). Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J Neurosci. 26(3):916-925. https://doi.org/10.1523/JNEUROSCI.2353-05.2006.

Bolling DZ, Pitskel NB, Deen B, Crowley MJ, McPartland JC, Mayes LC, Pelphrey K A. (2011). Dissociable brain mechanisms for processing social exclusion and rule violation. NeuroImage. 54(3):2462–2471. https://doi.org/10.1016/j.neuroimage.2010.10.049.

Brand M, Young KS, Laier C, Wölfling K, Potenza MN. (2016). Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An Interaction of Person-Affect-Cognition-Execution (I-PACE) model. Neurosci Biobehav Rev. 71:252-266. https://doi.org/10.1016/j.neubiorev.2016.08.033.

Castillo, E. G., Ijadi-Maghsoodi, R., Shadravan, S., Moore, E., Mensah, M. O., 3rd, Docherty, M., Aguilera Nunez, M. G., Barcelo, N., Goodsmith, N., Halpin, L. E., Morton, I., Mango, J., Montero, A. E., Rahmanian Koushkaki, S., Bromley, E., Chung, B., Jones, F., Gabrielian, S., Gelberg, L., Greenberg, J. M., … Wells, K. B. (2019). Community Interventions to Promote Mental Health and Social Equity. Curr Psychiatry Rep. 21(5):35. https://doi.org/10.1007/s11920-019-1017-0.

Crockett MJ, Clark L, Hauser MD, Robbins TW. (2010). Serotonin selectively influences moral judgment and behavior through effects on harm aversion. Proc Natl Acad Sci U S A. 107(40):17433-174438. https://doi.org/10.1073/pnas.1009396107.

Drevets WC, Price JL, Furey ML. (2008). Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct. 213(1-2):93-118. https://doi.org/doi:10.1007/s00429-008-0189-x.

Etkin A, Wager TD. (2007). Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry. 164(10):1476-1488. https://doi.org/doi:10.1176/appi.ajp.2007.07030504.

Fellows LK. (2016). The Neuroscience of Human Decision-Making Through the Lens of Learning and Memory. Curr Top Behav Neurosci. 37:231-251.

Floresco SB. (2013). Prefrontal dopamine and behavioral flexibility: shifting from an "inverted-U" towards a family of functions. Front Neurosci. 7:62. https://doi.org/doi:10.3389/fnins.2013.00062.

Friedman NP, Robbins TW. (2022). The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology. 47(1):72-89. https://doi.org/10.1038/s41386-021-01132-0.

Fu H, Chen Z, Josephson L, Li Z, Liang SH. (2019). Positron Emission Tomography (PET) ligand development for ionotropic glutamate receptors: challenges and opportunities for radiotracer targeting N-methyl-D-aspartate (NMDA), alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) and Kainate Receptors. J Med Chem. 62(2):403-419. https://doi.org/10.1021/acs.jmedchem.8b00714.

Funahashi S. (2017). Prefrontal Contribution to Decision-Making under Free-Choice Conditions. Front Neurosci. 11:431. https://doi.org/10.3389/fnins.2017.00431.

Galvan A, Hare TA, Parra CE, Penn J, Voss H, Glover G, Casey BJ. (2006). Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J Neurosci. 26(25):6885-6892. https://doi.org/10.1523/JNEUROSCI.1062-06.2006.

Grace AA, Floresco SB, Goto Y, Lodge DJ. (2007). Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 30(5):220-227. https://doi.org/10.1016/j.tins.2007.03.003.

Hampton AN, Adolphs R, Tyszka MJ, O'Doherty JP. (2007). Contributions of the amygdala to reward expectancy and choice signals in human prefrontal cortex. Neuron. 55(4);545–555. https://doi.org/10.1016/j.neuron.2007.07.022.

Hartling C, Metz S, Pehr, C, Scheidegger M, Gruzman R, Keicher C, Wunder A, Weigand A, Grimm S. (2021). Comparison of Four fMRI Paradigms Probing Emotion Processing. Brain Sci. 11(5):525. https://doi.org/10.3390/brainsci11050525.

Hiser J, Koenigs M. (2018). The Multifaceted Role of the Ventromedial Prefrontal Cortex in Emotion, Decision Making, Social Cognition, and Psychopathology. Biol Psychiatry. 83(8):638-647.

Hutton JS, Dudley, DeWitt, T, Horowitz-Kraus T. (2022). Associations between digital media use and brain surface structural measures in preschool-aged children. Sci Rep. 12(1):19095. https://doi.org/10.1038/s41598-022-20922-0.

Ji G, Neugebauer V. (2012). Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics. Mol Brain. 5(1):36. https://doi.org/doi:10.1186/1756-6606-5-36.

Jorge RE. (2005). Neuropsychiatric consequences of traumatic brain injury: a review of recent findings. Curr Opin Psychiatry. 18(3):289-299. https://doi.org/10.1097/01.yco.0000165600.90928.92.

Koob GF, Volkow ND. (2016). Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 3(8):760-773. https://doi.org/10.1016/S2215-0366(16)00104-8.

Kroker T, Wyczesany M, Rehbein, Roesmann K, Wessing I, Junghöfer. (2022). Noninvasive stimulation of the ventromedial prefrontal cortex modulates rationality of human decision-making. Sci Rep. 12(1):20213. https://doi.org/10.1038/s41598-022-24526-6.

Kuan AT, Bondanelli G, Driscoll LN, Han J, Kim M, Hildebrand DGC, Graham BJ, Wilson DE, Thomas LA, Panzeri S, Harvey CD, Lee WCA. (2024). Synaptic wiring motifs in posterior parietal cortex support decision-making. Nature. 627:367-373. https://doi.org/10.1038/s41586-024-07088-7.

Kuss DJ, Griffiths MD. (2012). Internet and gaming addiction: a systematic literature review of neuroimaging studies. Brain Sci. 2(3):347-374. https://doi.org/doi:10.3390/brainsci2030347.

LeDoux JE. (2000). Emotion circuits in the brain. Annu Rev Neurosci. 23:155-184. https://doi.org/10.1146/annurev.neuro.23.1.155.

Li CT, Yang KC, Lin WC. (2019). Glutamatergic Dysfunction and Glutamatergic Compounds for Major Psychiatric Disorders: Evidence From Clinical Neuroimaging Studies. Front Psychiatry. 9:767. https://doi.org/10.3389/fpsyt.2018.00767.

Madhusoodanan S, Ting MB, Farah T, Ugur U. (2015). Psychiatric aspects of brain tumors: A review. World J Psychiatry. 5(3):273-285. https://doi.org/10.5498/wjp.v5.i3.273.

McGaugh JL. (2018). Emotional arousal regulation and the amygdala's role in the formation of lasting memories. Curr Opin Behav Sci.19:55-60. https://doi.org/10.1016/j.cobeha.2017.10.003.

Meshi D, Morawetz C, Heekeren HR. (2013). Nucleus accumbens response to gains in reputation for the self relative to gains for others predicts social media use. Front Hum Neurosci. 7:439. https://doi.org/10.3389/fnhum.2013.00439.

Miller EK, Cohen JD. (2001). An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 24:167-202. https://doi.org/10.1146/annurev.neuro.24.1.167.

Montague PR, King-Casas B, Cohen JD. (2006). Imaging valuation models in human choice. Annu Rev Neurosci. 29:417-448. https://doi.org/10.1146/annurev.neuro.29.051605.112903.

Morgan AA, Alves ND, Stevens GS, Yeasmin TT, Mackay A, Power S, Sargin D, Hanna C, Adib AL, Ziolkowski-Blake A, Lambe EK, Ansorge MS. (2023). Medial Prefrontal Cortex Serotonin Input Regulates Cognitive Flexibility in Mice. bioRxiv: the preprint server for biology. 2023.03.30.534775. https://doi.org/10.1101/2023.03.30.534775.

Motzkin JC, Philippi CL, Wolf RC, Baskaya MK, Koenigs M. (2015). Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol Psychiatry. 77(3):276-284. https://doi.org/doi:10.1016/j.biopsych.2014.02.014.

Nelson EE, Guyer AE. (2011). The development of the ventral prefrontal cortex and social flexibility. Dev Cogn Neurosci. 1(3):233-245. https://doi.org/doi:10.1016/j.dcn.2011.01.002.

Park YS, Sammartino F, Young NA, Corrigan J, Krishna V, Rezai AR. (2019). Anatomic review of the ventral capsule/ventral striatum and the nucleus accumbens to guide target selection for Deep brain stimulation for obsessive-compulsive disorder. World Neurosurg. 126:1-10. https://doi.org/10.1016/j.wneu.2019.01.254.

Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci. 9(12):947-957. https://doi.org/doi:10.1038/nrn2513.

Pessoa L. (2008). On the relationship between emotion and cognition. Nat Rev Neurosci. 9(2):148-158. https://doi.org/10.1038/nrn2317.

Prezenski S, Brechmann A, Wolff S, Russwinkel N. (2017). A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making. Front Psychol. 8:1335. https://doi.org/10.3389/fpsyg.2017.01335.

Rascovsky K, Hodges JR, Knopman D, et al. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 134(Pt 9):2456-2477. https://doi.org/doi:10.1093/brain/awr179.

Rahman MA, Uddin MS, Ahmad M. (2019). Modeling and classification of voluntary and imagery movements for brain-computer interface from fNIR and EEG signals through convolutional neural network. Health Inf Sci Syst. 7(1):22. https://doi.org/10.1007/s13755-019-0081-5.

Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. (2004). The role of the medial frontal cortex in cognitive control. Science. 306(5695):443-447. https://doi.org/10.1126/science.1100301.

Robbins TW, Everitt BJ. (1996). Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol. 6(22):228-236.

Seghier ML, Mohamed AF, Claudine H. (2019). Educational fMRI: From the Lab to the Classroom. Front Psychol. 10:2769. https://doi.org/10.3389/fpsyg.2019.02769.

Shen J, Liu N, Li D, Zhang B. (2022). Behavioral Analysis of EEG Signals in Loss-Gain Decision-Making Experiments. Behav Neurol. 2022:3070608. https://doi.org/10.1155/2022/3070608.

Stoll FM, Rudebeck PH. (2024). Decision-making shapes dynamic inter-areal communication within macaque ventral frontal cortex. bioRxiv: the preprint server for biology. 2024.07.05.602229. https://doi.org/10.1016/j.cub.2024.08.034.

Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen, KB, Yuan H, Myers SJ, Dingledine R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 62(3):405-496. https://doi.org/10.1124/pr.109.002451.

Uncapher MR, Wagner AD. (2018). Minds and brains of media multitaskers: Current findings and future directions. Proc Natl Acad Sci U S A. 115(40):9889-9896. https://doi.org/10.1073/pnas.1611612115.

Vassena E, Deraeve J, Alexander WH. (2020). Surprise, value and control in anterior cingulate cortex during speeded decision-making. Nat Hum Behav. 4(4):412-422. https://doi.org/10.1038/s41562-019-0801-5.

Wright J. (2018). Seeing patterns in neuroimaging data. Prog Brain Res. 243:299-323. https://doi.org/10.1016/bs.pbr.2018.10.025.

Yuan P, Raz N. (2014). Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci Biobehav Rev. 42:180-192. https://doi.org/10.1016/j.neubiorev.2014.02.005.

Publicado
2026-01-26
Cómo citar
Parra Abarca, J., Baldivia Noyola, P., Pérez Palacios, H. B., Arellanes Robledo, H., & Rodríguez Matías, L. (2026). Neurociencia de la Toma de Decisiones: Mecanismos Cerebrales, Modulación Neurotransmisora y Desafíos de la Neurotecnología en la Era Digital. Ciencia Latina Revista Científica Multidisciplinar, 9(6), 9107-9127. https://doi.org/10.37811/cl_rcm.v9i6.22019
Sección
Ciencias de la Salud