Análisis y Clonación del Gen catE de Bacillus Licheniformis M2-7

Palabras clave: gen catE, bacullis licheniformis, clonación

Resumen

En Bacillus licheniformis M2-7 el gen catE codifica para la posible proteína catecol 2, 3-dioxigenasa, relacionada con la biodegradación de hidrocarburos, confiriéndole mecanismos de resistencia contra estos compuestos. En los últimos años, el desarrollo de organismos genéticamente modificados (OGM) y la biorremediación utilizan esta nueva tecnología potenciando las características metabólicas y logrando una degradación de agentes contaminantes más eficiente. Para establecer estrategias de biorremediación, se debe conocer los procesos metabólicos implicados y los genes que codifican las proteínas relacionadas. Este trabajo se centra en analizar y clonar el gen catE de B. licheniformis M2-7 en un plásmido para confirmar su función en la utilización de hidrocarburos. Para ello se extrajo el ADN cromosomal, se amplificó un fragmento del gen catE mediante PCR y se clonó en el vector pJET1.2/blunt, la transformación se realizó E. coli DH5. La construcción del plásmido recombinante se confirmó mediante PCR y digestión con EcoRV. Mediante esta metodología se logró diseñar el plásmido pCAT derivado del vector pJET1.2/blunt, llevando un fragmento del gen catE de B. licheniformis M2-7, plásmido que se encuentra en la cepa RMJ de E. coli, lo que permitirá utilizarla como herramienta molecular para generar una mutante en dicho gen en B. licheniformis.

Descargas

La descarga de datos todavía no está disponible.

Citas

Alfarhani, B., Al-Tameemi, M., Goicoechea, H.C., Barbosa, F. and Campiglia, A.D. (2018). Direct analysis of benzo[ a ]pyrene metabolites with strong overlapping in both the spectral and lifetime domains. Microchemical Journal, 137, 51–61. https://doi.org/10.1016/j.microc.2017.09.022

Bhatt, K.K., Lily, M.K., Joshi, G. and Dangwal, K. (2018). Benzo(a)pyrene degradation pathway in Bacillus subtilis BMT4i (MTCC 9447). Turkish Journal of Biochemistry, 43, 693–701. https://doi.org/10.1515/tjb-2017-0334

Eskandari, S., Hoodaji, M., Tahmourespour, A., Abdollahi, A., Baghi, T.M., Eslamian, S. and Ostad-Ali-Askari, K. (2017). Bioremediation of Polycyclic Aromatic Hydrocarbons by Bacillus licheniformis ATHE9 and Bacillus mojavensis ATHE13 as Newly Strains Isolated from Oil-Contaminated Soil. Journal of Geography, Environment and Earth Science International, 11, 1–11. https://doi.org/10.9734/JGEESI/2017/35447

Habe, H. and Omori, T. (2003). Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci. Biotechnol. Biochem, 67, 225–243. https://doi.org/10.1271/bbb.67.225

Hunter, R.D., Ekunwe, S.I.N., Dodor, D.E., Hwang, H.-M. and Ekunwe, L. (2005). Bacillus subtilis is a Potential Degrader of Pyrene and Benzo[a]pyrene. Int J Environ Res Public Health, 2, 267–271. https://doi.org/10.3390/ijerph2005020010

Guevara-Luna, J., Alvarez-Fitz, P., Ríos-Leal, E., Acevedo-Quiroz, M., Encarnación-Guevara, S., Moreno-Godinez, M.E., Castellanos-Escamilla, M., Toribio-Jiménez, J. and Romero-Ramírez, Y. (2018). Biotransformation of benzo[a]pyrene by the thermophilic bacterium Bacillus licheniformis M2-7. World J Microbiol Biotechnol, 34, 88.

https://doi.org/10.1007/s11274-018-2469-9

Hoffmann, K., Wollherr, A., Larsen, M., Rachinger, M., Liesegang, H., Ehrenreich, A. and Meinhardt, F. (2010). Facilitation of Direct Conditional Knockout of Essential Genes in Bacillus licheniformis DSM13 by Comparative Genetic Analysis and Manipulation of Genetic Competence. Applied and Environmental Microbiology, 76, 5046–5057.

https://doi.org/10.1128/AEM.00660-10

Hoseini, S.S. and Sauer, M.G. (2015). Molecular cloning using polymerase chain reaction, an educational guide for cellular engineering. J Biol Eng, 9. https://doi.org/10.1186/1754-1611-9-2

International Agency for Research on Cancer, Weltgesundheitsorganisation (Eds.), 2012. IARC monographs on the evaluation of carcinogenic risks to humans, volume 100 F, chemical agents and related occupations: this publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon, 20 - 27 October 2009. IARC, Lyon.

Ishida, T., Kita, A., Miki, K., Nozaki, M. and Horiike, K. (2002). Structure and reaction mechanism of catechol 2,3-dioxygenase (metapyrocatechase). Int. Congr. Ser., Oxygen and life: Oxygenases, oxidase and lipid mediators 1233, 213–220. https://doi.org/10.1016/S0531-5131(02)00149-8

Lily, M.K., Bahuguna, A., Dangwal, K. and Garg, V. (2009). Degradation of Benzo [a] Pyrene by a novel strain Bacillus subtilis BMT4i (MTCC 9447). Brazilian Journal of Microbiology, 40, 884–892. https://doi.org/10.1590/S1517-83822009000400020

Mahaffey, W.R., Gibson, D.T. and Cerniglia, C.E. (1988). Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz[a]anthracene. Appl Environ Microbiol, 54, 2415–2423. https://doi.org/10.1128/aem.54.10.2415-2423.1988

Mohandass, R., Rout, P., Jiwal, S. and Sasikala, C. (2012). Biodegradation of benzo[a]pyrene by the mixed culture of Bacillus cereus and Bacillus vireti isolated from the petrochemical industry. J Environ Biol, 33, 985–989.

Schneider, J., Grosser, R., Jayasimhulu, K., Xue, W. and Warshawsky, D. (1996). Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol, 62, 13–19.

https://doi.org/10.1128/aem.62.1.13-19.1996

Sim, H.W., Jung, M. and Cho, Y.K. (2013). Purification and characterization of protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. J Korean Soc Appl Biol Chem, 56, 401–408. https://doi.org/10.1007/s13765-013-3080-2

Tam, L.T., Eymann, C., Albrecht, D., Sietmann, R., Schauer, F., Hecker, M. and Antelmann, H. (2006). Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. Environ. Microbiol, 8, 1408–1427. https://doi.org/10.1111/j.1462-2920.2006.01034.x

Tiwari, B., Manickam, N., Kumari, S. and Tiwari, A. (2016). Biodegradation and dissolution of polyaromatic hydrocarbons by Stenotrophomonas sp. Bioresource Technology, 216, 1102–1105. https://doi.org/10.1016/j.biortech.2016.06.047}

Pi, H. and Helmann, J.D. (2018). Genome-Wide Characterization of the Fur Regulatory Network Reveals a Link between Catechol Degradation and Bacillibactin Metabolism in Bacillus subtilis. mBio, 9. https://doi.org/10.1128/mBio.01451-18

Qin, W., Zhu, Y., Fan, F., Wang, Y., Liu, X., Ding, A. and Dou, J. (2017). Biodegradation of benzo(a)pyrene by Microbacterium sp. strain under denitrification: Degradation pathway and effects of limiting electron acceptors or carbon source. Biochemical Engineering Journal, 121, 131–138. https://doi.org/10.1016/j.bej.2017.02.001

Rojas-Aparicio, A., Rojas-Aparicio, A., Hernández-Eligio, J.A., Hernández-Eligio, J.A., Toribio-Jiménez, J., Toribio-Jiménez, J., Rodríguez-Barrera, M.Á., Rodríguez-Barrera, M.Á., Castellanos-Escamilla, M., Castellanos-Escamilla, M. and Romero-Ramírez, Y. (2018). Research Article Genetic expression of pobA and fabHB in Bacillus licheniformis M2-7 in the presence of benzo[a]pyrene. Genet. Mol. Res, 17. https://doi.org/10.4238/gmr16039916

Sambrook, J. and Green, M.R. (2012). Molecular cloning: a laboratory manual, 4th ed. ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

Serrano-Ángel, L.I., Segura, D., Jiménez, J.T., Barrera, M.A.R., Pineda, C.O. and Ramirez, Y.R. (2020). Carbon Storage Regulator A (csrA) Gene Regulates Motility and Growth of Bacillus licheniformis in the Presence of Hydrocarbons. Microbiol. Biotechnol. Lett, 48, 185–192. https://doi.org/10.4014/mbl.1909.09014

Song, M., Luo, C., Jiang, L., Zhang, D., Wang, Y. and Zhang, G. (2015). Identification of Benzo[a]pyrene-Metabolizing Bacteria in Forest Soils by Using DNA-Based Stable-Isotope Probing. Appl. Environ. Microbiol, 81, 7368–7376. https://doi.org/10.1128/AEM.01983-15

Herrera Duarte, L. E. (2022). Los desafíos Éticos y Legales de la Inteligencia Artificial y la Robótica. Estudios Y Perspectivas Revista Científica Y Académica , 2(2), 115–130. https://doi.org/10.61384/r.c.a.v2i2.26

González Pérez , A. M. (2023). Características Epidemiológicas de la Tuberculosis Extrapulmonar. Revista Científica De Salud Y Desarrollo Humano, 4(2), 1–13. https://doi.org/10.61368/r.s.d.h.v4i2.23

Vargas, C. (2023). La Gestión de la Información Personal en el Ámbito Digital. Emergentes - Revista Científica, 3(1), 58–76. https://doi.org/10.60112/erc.v3i1.21

Cadenas Bogantes, D., & Castro Miranda, J. C. (2021). Analysis Of the Effectiveness of The Action Oriented Approach in The New English Program Proposed by The Ministry of Public Education in The Year 2018. Sapiencia Revista Científica Y Académica , 1(1), 45–60. Recuperado a partir de https://revistasapiencia.org/index.php/Sapiencia/article/view/13

Publicado
2024-03-08
Cómo citar
Mozo Mejía, R., Rojas Aparicio, A., Rodríguez Barrera, M. Ángel, Ortuño Pineda, C., & Romero Ramírez, Y. (2024). Análisis y Clonación del Gen catE de Bacillus Licheniformis M2-7. Ciencia Latina Revista Científica Multidisciplinar, 8(1), 6238-6251. https://doi.org/10.37811/cl_rcm.v8i1.9964
Sección
Ciencias Sociales y Humanas

Artículos más leídos del mismo autor/a